A331408 Number of subsets of {1..n} that contain exactly three odd numbers.
0, 0, 0, 0, 4, 8, 32, 64, 160, 320, 640, 1280, 2240, 4480, 7168, 14336, 21504, 43008, 61440, 122880, 168960, 337920, 450560, 901120, 1171456, 2342912, 2981888, 5963776, 7454720, 14909440, 18350080, 36700160, 44564480, 89128960, 106954752, 213909504, 254017536, 508035072, 597688320
Offset: 1
Examples
For n = 6, a(6) = 8 and the 8 subsets are {1,3,5}, {1,2,3,5}, {1,3,4,5}, {1,3,5,6}, {1,2,3,4,5}, {1,2,3,5,6}, {1,3,4,5,6}, {1,2,3,4,5,6}.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,8,0,-24,0,32,0,-16).
Crossrefs
Cf. A330592.
Programs
-
Magma
[IsOdd(n) select Binomial((n+1) div 2, 3)*2^((n-1) div 2) else Binomial((n div 2), 3)*2^(n div 2): n in [1..39]]; // Marius A. Burtea, Jan 17 2020
-
Mathematica
a[n_] := If[OddQ[n], Binomial[(n + 1)/2, 3]*2^((n - 1)/2), Binomial[n/2, 3]*2^(n/2)]; Array[a, 39] (* Amiram Eldar, Jan 17 2020 *)
-
PARI
concat([0,0,0,0], Vec(4*x^5*(1 + 2*x) / (1 - 2*x^2)^4 + O(x^40))) \\ Colin Barker, Jan 17 2020
Formula
a(n) = binomial((n+1)/2,3) * 2^((n-1)/2), n odd;
a(n) = binomial(n/2,3) * 2^(n/2), n even.
From Colin Barker, Jan 17 2020: (Start)
G.f.: 4*x^5*(1 + 2*x) / (1 - 2*x^2)^4.
a(n) = 8*a(n-2) - 24*a(n-4) + 32*a(n-6) - 16*a(n-8) for n>8. (End)
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=5} 1/a(n) = (9/8)*(2*log(2)-1).
Sum_{n>=5} (-1)^(n+1)/a(n) = (3/8)*(2*log(2)-1). (End)
Comments