A330669 The prime indices of the prime powers (A000961).
0, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 7, 8, 9, 3, 2, 10, 11, 1, 12, 13, 14, 15, 4, 16, 17, 18, 1, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 30, 5, 3, 31, 1, 32, 33, 34, 35, 36, 37, 38, 39, 6, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
Offset: 1
Examples
a(16) is 2 since A000961(16) is 27 which is 3^3 = (p_2)^3, i.e., the prime index of 3 is 2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n) option remember; local k; for k from 1+b(n-1) while nops(ifactors(k)[2])>1 do od; k end: b(1):=1: a:= n-> `if`(n=1, 0, numtheory[pi](ifactors(b(n))[2, 1$2])): seq(a(n), n=1..100); # Alois P. Heinz, Feb 20 2020
-
Mathematica
mxn = 500; Join[{0}, Transpose[ Sort@ Flatten[ Table[ {Prime@n^ex, n}, {n, PrimePi@ mxn}, {ex, Log[Prime@n, mxn]}], 1]][[2]]]
-
PARI
lista(nn) = {print1(0); for(n=2, nn, if(isprimepower(n, &p), print1(", ", primepi(p)))); } \\ Jinyuan Wang, Feb 19 2020
-
Python
from sympy import primepi, integer_nthroot, primefactors def A330669(n): if n == 1: return 0 def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return int(primepi(primefactors(kmax)[0])) # Chai Wah Wu, Aug 20 2024