A330706 Numbers m such that the prime factorization of m! contains no composite exponents.
1, 2, 3, 4, 5, 8, 14
Offset: 1
Examples
4 is a term since 4! = (2^3)*(3^1) and the multiplicity of 2 is 3 which is prime and the multiplicity of 3 is 1.
Links
- J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177-181.
Programs
-
Mathematica
Select[Range[100], !AnyTrue[FactorInteger[#!][[;;,2]], CompositeQ] &] (* Amiram Eldar, Mar 29 2020 *)
-
PARI
ok(n)={my(f=factor(n!)[,2]); for(i=1, #f, if(f[i]<>1 && !isprime(f[i]), return(0))); 1} {select(ok, [1..100])} \\ Andrew Howroyd, Mar 29 2020
-
PARI
f(m,p)=my(s); while(m\=p, s+=m); s; is(n)=forprime(p=2,n\4+1, if(!isprime(f(n,p)), return(0))); 1; select(is,[1..25]) \\ Charles R Greathouse IV, Apr 14 2020
Comments