cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330707 a(n) = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4.

Original entry on oeis.org

0, 1, 3, 7, 13, 20, 28, 38, 50, 63, 77, 93, 111, 130, 150, 172, 196, 221, 247, 275, 305, 336, 368, 402, 438, 475, 513, 553, 595, 638, 682, 728, 776, 825, 875, 927, 981, 1036, 1092, 1150, 1210, 1271, 1333, 1397, 1463
Offset: 0

Views

Author

Paul Curtz, Dec 27 2019

Keywords

Comments

Essentially four odds followed by four evens.
Last digit is neither 4 nor 9.
Essentially twice or twin sequences in the hexagonal spiral from A002265.
21 21 21 22 22 22 22
21 14 14 14 14 15 15 23
20 13 8 8 8 9 9 15 23
20 13 8 4 4 4 4 9 15 23
20 13 7 3 1 1 1 5 9 16 23
20 13 7 3 1 0 0 2 5 10 16 24
19 12 7 3 0 0 2 5 10 16 24
19 12 7 3 2 2 5 10 16 24
19 12 6 6 6 6 10 17 24
19 12 11 11 11 11 17 25
18 18 18 18 17 17 25
.
There are 12 twin sequences. 6 of them (A001859, A006578, A077043, A231559, A024219, A281026) are in the OEIS. a(n) is the seventh.
0, 1, 3, 7, 13, 20, 28, 38, 50, ...
1, 2, 4, 6, 7, 8, 10, 12, 13, ...
1, 2, 2, 1, 1, 2, 2, 1, 1, ... period 4. See A014695.

Crossrefs

Programs

  • Magma
    [(3*n^2+n-1+ (-1)^Floor(n/2))/4: n in [0..60]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq((3*n^2+n-1+sqrt(2)*sin((2*n+1)*Pi/4))/4, n = 0..60); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{3,-4,4,-3,1}, {0,1,3,7,13}, 60] (* Amiram Eldar, Dec 27 2019 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^60))) \\ Colin Barker, Dec 27 2019
    
  • Sage
    [(3*n^2+n-1+(-1)^floor(n/2))/4 for n in (0..60)] # G. C. Greubel, Dec 30 2019

Formula

a(n) = A231559(-n).
a(1+2*n) + a(2+2*n) = A033579(n+1).
a(40+n) - a(n) = 1210, 1270, 1330, 1390, 1450, ... . See 10*A016921(n).
From Colin Barker, Dec 27 2019: (Start)
G.f.: x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
E.g.f.: (cos(x) + sin(x) + (-1 + 4*x + 3*x^2)*exp(x))/4. - Stefano Spezia, Dec 27 2019
a(n) = ( 3*n^2 + n - 1 + sqrt(2)*sin((2*n+1)*Pi/4) )/4 = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4. - G. C. Greubel, Dec 30 2019