cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A337375 a(n) = A330749(A005940(1+n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 6, 3, 2, 1, 1, 3, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 5, 15, 6, 5, 6, 3, 2, 1, 1, 1, 1, 5, 6, 9, 4, 1, 1, 3, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 11, 7, 7, 5, 35, 30, 15, 6, 7, 5, 15, 12, 5, 6, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 7, 5
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2020

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A330749(n) = gcd(n, A064989(n));
    A337375(n) = A330749(A005940(1+n));

Formula

a(n) = A330749(A005940(1+n)).

A355693 Dirichlet inverse of A330749, gcd(n, A064989(n)), where A064989 shifts the prime factorization one step towards lower primes.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, 1, -1, 0, -1, 1, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, 0, -1, 0, 1, 1, -3, -2, -1, 1, 1, 0, -1, 0, -1, 0, 2, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 3, -1, 1, -1, 1, 2, 0, -5, 0, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, 3, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Cf. also A354365, A354366.

Programs

  • PARI
    A330749(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); gcd(n, factorback(f)); };
    memoA355693 = Map();
    A355693(n) = if(1==n,1,my(v); if(mapisdefined(memoA355693,n,&v), v, v = -sumdiv(n,d,if(dA330749(n/d)*A355693(d),0)); mapput(memoA355693,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA330749(n/d) * a(d).

A319626 Primorial deflation of n (numerator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the numerator of g(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 15, 46, 47, 24, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 10, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319627 for the corresponding denominators.
The restriction of f to the natural numbers corresponds to A108951.
The function g is completely multiplicative over the positive rational numbers with g(2) = 2 and g(q) = q/p for any pair (p, q) of consecutive prime numbers.
The ratio A319626(n)/A319627(n) can be viewed as a "primorial deflation" of n (see also A329900), with the inverse operation being n = A108951(A319626(n)) / A108951(A319627(n)), where A319627(k) = 1 for all k in A025487. - Daniel Suteu, Dec 29 2019

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 21.
		

Crossrefs

A left inverse of A108951. Coincides with A329900 on A025487.
Cf. A006530, A053585, A064989, A181815, A307035, A319627, A319630, A329902, A330749, A330750 (rgs-transform), A330751 (ordinal transform).

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); numerator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = n / gcd(n, A064989(n)) = n / A330749(n).
a(n) <= n with equality iff n belongs to A319630.
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
From Antti Karttunen, Dec 29 2019: (Start)
a(A108951(n)) = n.
a(A025487(n)) = A329900(A025487(n)) = A181815(n).
Many of the formulas given in A329900 apply here as well:
a(n!) = A307035(n), a(A002182(n)) = A329902(n), and so on.
(End)

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Dec 29 2019

A346095 a(n) = gcd(A324886(n), A064989(A324886(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 9, 1, 25, 1, 1, 1, 1, 1, 5, 49, 1, 1, 1, 1, 7, 1, 1, 1, 1, 121, 625, 1, 1, 1, 7, 1, 11, 1, 1, 7, 1, 1, 5, 143, 2401, 1, 1, 1, 1, 169, 1, 1, 1, 1, 343, 1, 1, 1331, 1, 17, 1, 1, 1, 1, 161051, 1, 175, 1, 1, 41503, 1, 169, 1, 1, 49, 35, 1, 1, 121, 19, 1, 1, 1, 1, 49, 24137569
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A330749(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); gcd(n, factorback(f)); };
    A346095(n) = A330749(A324886(n)); \\ Rest of program given in A324886.

Formula

a(n) = A330749(A324886(n)) = gcd(A324886(n), A329044(n)) = gcd(A324886(n), A064989(A324886(n))).
a(n) = A324886(n) / A346096(n).
a(n) = A329044(n) / A346097(n).
a(n) mod A006530(n) > 0, for all n > 1.

A330742 a(n) = n / gcd(A309639(n), A319626(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 6, 1, 2, 3, 1, 1, 2, 1, 4, 7, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 14, 1, 4, 15, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 12, 1, 2, 7, 1, 5, 6, 1, 4, 23, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 28, 5, 2, 3, 8, 1, 30, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 6, 1, 8, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n / A330741(n) = n / gcd(A309639(n), A319626(n)).

A083259 a(n) = gcd(n, A071364(n)), where A071364(n) is the smallest number with same sequence of exponents in canonical prime factorization as n.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 2, 3, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 96, 1
Offset: 1

Views

Author

Labos Elemer, May 09 2003

Keywords

Crossrefs

Programs

A330741 a(n) = gcd(A309639(n), A319626(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 5, 16, 17, 9, 19, 5, 3, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 3, 43, 11, 3, 23, 47, 8, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 3, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 16, 81, 41, 83, 3, 17, 43, 29, 11, 89, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A309639(n), A319626(n)).
a(n) = n / A330742(n).

A330750 Lexicographically earliest infinite sequence such that a(i) = a(j) => A319626(i) = A319626(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 5, 14, 15, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 5, 27, 28, 29, 30, 6, 8, 31, 32, 33, 34, 35, 18, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 24, 47, 48, 49, 50, 51, 9, 52, 53, 54, 55, 56, 29, 57, 58, 59, 13, 60, 61, 62, 63, 22, 64, 10, 33, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 38, 76
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Comments

Restricted growth sequence transform of A319626, where A319626(n) = n / A330749(n) = n / gcd(n, A064989(n)).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    v330750 = rgs_transform(vector(up_to, n, A319626(n)));
    A330750(n) = v330750[n];
Showing 1-8 of 8 results.