cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A346096 Numerator of the primorial deflation of A276086(A108951(n)): a(n) = A319626(A324886(n)).

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 11, 5, 7, 49, 13, 625, 17, 121, 117649, 25, 19, 49, 23, 2401, 1771561, 169, 29, 175, 14641, 289, 55, 14641, 31, 26411, 37, 21, 4826809, 361, 299393809, 2401, 41, 529, 24137569, 11, 43, 13, 47, 28561, 161051, 841, 53, 343, 6311981, 214358881, 47045881, 83521, 59, 3025, 48841, 214358881, 148035889, 961
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Numerator of ratio A324886(n) / A329044(n).

Crossrefs

Programs

Formula

a(n) = A319626(A324886(n)).
a(n) = A324886(n) / A346095(n) = A324886(n) / gcd(A324886(n), A329044(n)).
For n >= 1, A108951(A346096(n)) / A108951(A346097(n)) = A324886(n).
For n > 1, a(n) = A003961(A346098(n)).

A346097 Denominator of the primorial deflation of A276086(A108951(n)): a(n) = A319627(A324886(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 2, 3, 25, 11, 81, 13, 49, 15625, 4, 17, 9, 19, 625, 117649, 121, 23, 27, 1225, 169, 21, 2401, 29, 3125, 31, 10, 1771561, 289, 5764801, 81, 37, 361, 4826809, 5, 41, 7, 43, 14641, 12005, 529, 47, 75, 1127357, 1500625, 24137569, 28561, 53, 441, 14641, 5764801, 47045881, 841, 59, 125, 61, 961, 343, 100, 302875106592253
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Denominator of ratio A324886(n) / A329044(n).

Crossrefs

Cf. A346096 (numerators).
Cf. also A337377.

Programs

Formula

a(n) = A319627(A324886(n)).
a(n) = A329044(n) / A346095(n) = A329044(n) / gcd(A324886(n), A329044(n)).
A020639(a(n)) = A006530(n).
A108951(a(n)) = A346107(n).
A346105(a(n)) = A346109(n).

A346098 a(n) = A064989(A346096(n)) = A064989(A319626(A324886(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 3, 5, 25, 11, 81, 13, 49, 15625, 9, 17, 25, 19, 625, 117649, 121, 23, 45, 2401, 169, 21, 2401, 29, 4375, 31, 10, 1771561, 289, 14235529, 625, 37, 361, 4826809, 7, 41, 11, 43, 14641, 16807, 529, 47, 125, 2093663, 5764801, 24137569, 28561, 53, 441, 20449, 5764801, 47045881, 841, 59, 343, 61, 961, 1331, 100, 396067447082177
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Cf. A064989, A319626, A324886, A346095, A346096, A346097, A346099 [= gcd(n, a(n))].

Programs

Formula

A346099 a(n) = gcd(n, A346098(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 1, 1, 5, 11, 3, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 3, 1, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 1, 37, 19, 13, 1, 41, 1, 43, 11, 1, 23, 47, 1, 1, 1, 17, 13, 53, 9, 11, 7, 19, 29, 59, 1, 61, 31, 1, 4, 13, 11, 67, 17, 23, 1, 71, 3, 73, 37, 25, 19, 1, 13, 79, 1, 1, 41, 83, 1, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Only powers of primes (A000961) occur as terms. A346100 lists the exponents.

Crossrefs

Cf. A346090 (positions of ones).

Programs

Formula

a(n) = gcd(n, A346098(n)) = gcd(n, A064989(A319626(A324886(n)))).

A346100 a(n) = A100995(gcd(n, A064989(A319626(A324886(n))))).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A319626(n) = (n / gcd(n, A064989(n)));
    A346100(n) = isprimepower(gcd(n, A064989(A319626(A324886(n))))); \\ Rest of program given in A324886.

Formula

a(n) = A100995(A346099(n)) = A100995(gcd(n, A064989(A319626(A324886(n))))).
Showing 1-5 of 5 results.