cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A346109 a(n) = A276085(A108951(A346097(n))), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)).

Original entry on oeis.org

0, 1, 3, 2, 9, 6, 39, 1, 3, 18, 249, 12, 2559, 78, 54, 2, 32589, 6, 543099, 36, 234, 498, 10242789, 9, 96, 5118, 42, 156, 233335659, 45, 6703028889, 10, 1494, 65178, 312, 12, 207263519019, 1086198, 15354, 9, 7628001653829, 39, 311878265181039, 996, 165, 20485578, 13394639596851069, 21, 1284, 192, 195534, 10236, 628284422185342479
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A346108(n) - A108951(n).

A346107 a(n) = A108951(A346097(n)), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)).

Original entry on oeis.org

1, 2, 6, 4, 30, 36, 210, 2, 6, 900, 2310, 1296, 30030, 44100, 729000000, 4, 510510, 36, 9699690, 810000, 85766121000000, 5336100, 223092870, 216, 39690000, 901800900, 1260, 1944810000, 6469693230, 24300000, 200560490130, 60, 151939915084881000000, 260620460100, 3782285936100000000, 1296, 7420738134810, 94083986096100
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A346106(n) / A324886(n).

A337377 Primorial deflation (denominator) of Doudna-tree.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 3, 2, 1, 9, 2, 8, 1, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 11, 7, 14, 5, 21, 5, 20, 3, 5, 3, 2, 1, 9, 2, 8, 1, 49, 25, 50, 9, 15, 3, 4, 1, 125, 27, 18, 2, 81, 8, 32, 1, 13, 11, 22, 7, 33, 7, 28, 5, 55, 21, 14, 5, 63, 10, 40, 3, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 121
Offset: 0

Views

Author

Keywords

Comments

Like A005940, also this irregular table can be represented as a binary tree:
1
|
...................1...................
2 1
3......../ \........1 4......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 3 2 1 9 2 8 1
7 5 10 3 3 1 4 1 25 9 6 1 27 4 16 1
etc.
A194602 gives the positions of nodes that have value 1. They correspond to terms of A005940 that are products of primorials (A025487). The first 2^k nodes contain A000041(k+1) 1's.
a(n) is even if and only if A005940(1+n) occurs in A277569.

Crossrefs

Cf. A337376 (numerators).
A003961, A005940, A006519, A026741, A064989, A319627 are used in a formula defining this sequence.
Positions of 1's: A194602.
Cf. also A329886, A346097.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &@ Function[p, Times @@ Flatten@ Table[Prime[Count[Flatten[#], 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]@ Partition[Split[Join[IntegerDigits[# - 1, 2], {2}]], 2] &[# + 1] &, 96] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319627(n) = (A064989(n) / gcd(n, A064989(n)));
    A337377(n) = A319627(A005940(1+n));

Formula

a(n) = A319627(A005940(1+n)).
For n >= 1, a(2*n) = A003961(a(n)) * A006519(n+1).
a(2*n+1) = A026741(a(n)).

A346096 Numerator of the primorial deflation of A276086(A108951(n)): a(n) = A319626(A324886(n)).

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 11, 5, 7, 49, 13, 625, 17, 121, 117649, 25, 19, 49, 23, 2401, 1771561, 169, 29, 175, 14641, 289, 55, 14641, 31, 26411, 37, 21, 4826809, 361, 299393809, 2401, 41, 529, 24137569, 11, 43, 13, 47, 28561, 161051, 841, 53, 343, 6311981, 214358881, 47045881, 83521, 59, 3025, 48841, 214358881, 148035889, 961
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Numerator of ratio A324886(n) / A329044(n).

Crossrefs

Programs

Formula

a(n) = A319626(A324886(n)).
a(n) = A324886(n) / A346095(n) = A324886(n) / gcd(A324886(n), A329044(n)).
For n >= 1, A108951(A346096(n)) / A108951(A346097(n)) = A324886(n).
For n > 1, a(n) = A003961(A346098(n)).

A345941 a(n) = gcd(n, A329044(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 4, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 25, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 7, 4, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 03 2021

Keywords

Comments

Only powers of primes (A000961) occur as terms. A346087 gives the exponents. - Antti Karttunen, Jul 07 2021

Crossrefs

Programs

Formula

a(n) = gcd(n, A329044(n)).
a(n) = n / A345942(n).
a(n) = A329044(n) / A345943(n).
a(p) = p for all primes p.
From Antti Karttunen, Jul 07 2021: (Start)
a(n) = A006530(n)^A346087(n) = A006530(n)^min(A071178(n), A329348(n)).
a(n) = gcd(n, A346097(n)).
A006530(a(n)) = A020639(A329044(n)) = A006530(n).
(End)

A346095 a(n) = gcd(A324886(n), A064989(A324886(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 9, 1, 25, 1, 1, 1, 1, 1, 5, 49, 1, 1, 1, 1, 7, 1, 1, 1, 1, 121, 625, 1, 1, 1, 7, 1, 11, 1, 1, 7, 1, 1, 5, 143, 2401, 1, 1, 1, 1, 169, 1, 1, 1, 1, 343, 1, 1, 1331, 1, 17, 1, 1, 1, 1, 161051, 1, 175, 1, 1, 41503, 1, 169, 1, 1, 49, 35, 1, 1, 121, 19, 1, 1, 1, 1, 49, 24137569
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A330749(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); gcd(n, factorback(f)); };
    A346095(n) = A330749(A324886(n)); \\ Rest of program given in A324886.

Formula

a(n) = A330749(A324886(n)) = gcd(A324886(n), A329044(n)) = gcd(A324886(n), A064989(A324886(n))).
a(n) = A324886(n) / A346096(n).
a(n) = A329044(n) / A346097(n).
a(n) mod A006530(n) > 0, for all n > 1.

A346098 a(n) = A064989(A346096(n)) = A064989(A319626(A324886(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 3, 5, 25, 11, 81, 13, 49, 15625, 9, 17, 25, 19, 625, 117649, 121, 23, 45, 2401, 169, 21, 2401, 29, 4375, 31, 10, 1771561, 289, 14235529, 625, 37, 361, 4826809, 7, 41, 11, 43, 14641, 16807, 529, 47, 125, 2093663, 5764801, 24137569, 28561, 53, 441, 20449, 5764801, 47045881, 841, 59, 343, 61, 961, 1331, 100, 396067447082177
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Cf. A064989, A319626, A324886, A346095, A346096, A346097, A346099 [= gcd(n, a(n))].

Programs

Formula

A346099 a(n) = gcd(n, A346098(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 1, 1, 5, 11, 3, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 3, 1, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 1, 37, 19, 13, 1, 41, 1, 43, 11, 1, 23, 47, 1, 1, 1, 17, 13, 53, 9, 11, 7, 19, 29, 59, 1, 61, 31, 1, 4, 13, 11, 67, 17, 23, 1, 71, 3, 73, 37, 25, 19, 1, 13, 79, 1, 1, 41, 83, 1, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Only powers of primes (A000961) occur as terms. A346100 lists the exponents.

Crossrefs

Cf. A346090 (positions of ones).

Programs

Formula

a(n) = gcd(n, A346098(n)) = gcd(n, A064989(A319626(A324886(n)))).
Showing 1-8 of 8 results.