cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A330762 Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are multisets of colors with a total of n elements using exactly k colors.

Original entry on oeis.org

1, 2, 2, 4, 12, 8, 11, 67, 114, 58, 30, 376, 1230, 1496, 612, 96, 2174, 12038, 26156, 24570, 8374, 308, 12792, 113028, 389968, 630300, 481284, 140408, 1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906, 3648, 471260, 9574934, 70524256, 250201560, 479284952, 508811114, 282141552, 63830764
Offset: 1

Views

Author

Andrew Howroyd, Dec 29 2019

Keywords

Examples

			Triangle begins:
     1;
     2,     2;
     4,    12,       8;
    11,    67,     114,      58;
    30,   376,    1230,    1496,      612;
    96,  2174,   12038,   26156,    24570,     8374;
   308, 12792,  113028,  389968,   630300,   481284,   140408;
  1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906;
  ...
The T(3,2) = 12 trees are: (122), (112), ((1)(22)), ((1)(12)), ((2)(12)), ((2)(11)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).
		

Crossrefs

Column 1 is A141268.
Main diagonal is A005804.
Row sums are A330469.
Cf. A330763 (leaves are sets).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    { my(T=M(10)); for(n=1, #T~, print(T[n, 1..n])) }

A330764 Number of series-reduced rooted trees whose leaves are sets with a total of n elements covering an initial interval of positive integers.

Original entry on oeis.org

1, 3, 18, 194, 2944, 57959, 1398858, 39981994, 1320143478, 49439258516, 2070409961552, 95867076538834, 4863079990663528, 268198764863998103, 15977057268090388836, 1022415045656417706598, 69946606996018140613292, 5094427098628436561252367, 393558075509405403487404506
Offset: 1

Views

Author

Andrew Howroyd, Dec 29 2019

Keywords

Examples

			The a(3) = 18 trees:
  (123)          ((1)(12))       ((1)(1)(1))
  ((1)(23))      ((2)(12))       ((1)((1)(1)))
  ((2)(13))      ((1)(2)(2))
  ((3)(12))      ((1)(1)(2))
  ((1)(2)(3))    ((1)((2)(2)))
  ((1)((2)(3)))  ((1)((1)(2)))
  ((2)((1)(3)))  ((2)((1)(2)))
  ((3)((1)(2)))  ((2)((1)(1)))
		

Crossrefs

Row sums of A330763.
Cf. A330469 (leaves are multisets).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k, n)]))[n])); v}
    seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}
Showing 1-2 of 2 results.