A330787 Triangle read by rows: T(n,k) is the number of strict multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.
1, 2, 1, 4, 8, 1, 8, 32, 18, 1, 16, 124, 140, 32, 1, 32, 444, 888, 432, 50, 1, 64, 1568, 5016, 4196, 1060, 72, 1, 128, 5440, 26796, 34732, 15064, 2224, 98, 1, 256, 18768, 138292, 262200, 174240, 44348, 4172, 128, 1, 512, 64432, 698864, 1870840, 1781884, 692668, 112424, 7200, 162, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 4, 8, 1; 8, 32, 18, 1; 16, 124, 140, 32, 1; 32, 444, 888, 432, 50, 1; 64, 1568, 5016, 4196, 1060, 72, 1; 128, 5440, 26796, 34732, 15064, 2224, 98, 1; ... The T(3,1) = 4 multiset partitions are {{1,1,1}}, {{1,1,2}}, {{1,2,2}}, {{1,2,3}}. The T(3,2) = 8 multiset partitions are {{1},{1,1}}, {{1},{2,2}}, {{2},{1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}. The T(3,3) = 1 multiset partition is {{1},{2},{3}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Crossrefs
Programs
-
Mathematica
B[n_, k_] := Sum[Binomial[r, k] (-1)^(r-k), {r, k, n}]; row[n_] := Sum[B[n, j] SeriesCoefficient[ Product[(1 + x^k y)^Binomial[k + j - 1, j - 1], {k, 1, n}], {x, 0, n}], {j, 1, n}]/y + O[y]^n // CoefficientList[#, y]&; Array[row, 10] // Flatten (* Jean-François Alcover, Dec 17 2020, after Andrew Howroyd *)
-
PARI
\\ here B(n, k) is A239473(n, k) B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))} Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(prod(k=1, n, (1 + x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)} { for(n=1, 10, print(Row(n))) }