cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330787 Triangle read by rows: T(n,k) is the number of strict multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 1, 4, 8, 1, 8, 32, 18, 1, 16, 124, 140, 32, 1, 32, 444, 888, 432, 50, 1, 64, 1568, 5016, 4196, 1060, 72, 1, 128, 5440, 26796, 34732, 15064, 2224, 98, 1, 256, 18768, 138292, 262200, 174240, 44348, 4172, 128, 1, 512, 64432, 698864, 1870840, 1781884, 692668, 112424, 7200, 162, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 31 2019

Keywords

Examples

			Triangle begins:
    1;
    2,    1;
    4,    8,     1;
    8,   32,    18,     1;
   16,  124,   140,    32,     1;
   32,  444,   888,   432,    50,    1;
   64, 1568,  5016,  4196,  1060,   72,  1;
  128, 5440, 26796, 34732, 15064, 2224, 98, 1;
  ...
The T(3,1) = 4 multiset partitions are {{1,1,1}}, {{1,1,2}}, {{1,2,2}}, {{1,2,3}}.
The T(3,2) = 8 multiset partitions are {{1},{1,1}}, {{1},{2,2}}, {{2},{1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}.
The T(3,3) = 1 multiset partition is {{1},{2},{3}}.
		

Crossrefs

Row sums are A317776.
Column 1 is A000079(n-1).
Main diagonal is A000012.

Programs

  • Mathematica
    B[n_, k_] := Sum[Binomial[r, k] (-1)^(r-k), {r, k, n}];
    row[n_] := Sum[B[n, j] SeriesCoefficient[ Product[(1 + x^k y)^Binomial[k + j - 1, j - 1], {k, 1, n}], {x, 0, n}], {j, 1, n}]/y + O[y]^n // CoefficientList[#, y]&;
    Array[row, 10] // Flatten (* Jean-François Alcover, Dec 17 2020, after Andrew Howroyd *)
  • PARI
    \\ here B(n, k) is A239473(n, k)
    B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
    Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(prod(k=1, n, (1 + x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)}
    { for(n=1, 10, print(Row(n))) }