A330828
The squares of the Fermat primes, (A019434(n))^2.
Original entry on oeis.org
9, 25, 289, 66049, 4295098369
Offset: 1
a(1) = 3^2 = 9. The spectral basis of A330826(1) = 12 is {9,4}, consisting of primes and powers.
-
F := n -> 2^(2^n) + 1;
a := proc(n) if isprime(F(n)) then return F(n)^2 fi; end;
[seq(a(n)),n=0..4)];
-
(2^2^Select[Range[0,5],PrimeQ[2^(2^#)+1] &]+1)^2 (* Stefano Spezia, May 01 2025 *)
A330838
Numbers of the form 2^(2*p)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.
Original entry on oeis.org
9408, 2952192, 792772608, 13507500548554752, 885430204790715973632, 226672726487439148843008, 63802943738254840027519543753580740608, 84808659109362447746438494074097423574469305696233859650983304520596979712
Offset: 1
If p = 3, then M_3 = 7 and a(1) = 2^(2*3)*3*7^2 = 9408, with spectral basis {63^2, 56^2, 48^2}, and spectral sum equal to 1*9408 + 1 = 9409. However, {63^2, 56^2, 48^2} is also the spectral basis of A330836(1) = 4704, with spectral sum equal to 2*4704+1.
-
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n+1);
m:=2^p-1;
return 2^(2*p)*3*m^2;
end:
-
f[p_] := 2^(2p)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 17 2020 *)
Showing 1-2 of 2 results.
Comments