A330839 Numbers of the form 2^(2*p+1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.
18816, 5904384, 1585545216, 27015001097109504, 1770860409581431947264, 453345452974878297686016, 127605887476509680055039087507161481216, 169617318218724895492876988148194847148938611392467719301966609041193959424
Offset: 1
Keywords
Examples
a(1) = 2^(2*3+1) * 3 * 7^2 = 18816, and 18816 has spectral basis {63^2, 112^2, 48^2}, consisting of powers.
Links
- G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
- Wikipedia, Idempotent (ring theory)
- Wikipedia, Peirce decomposition
Programs
-
Maple
a := proc(n::posint) local p, m; p:=NumberTheory[IthMersenne](n+1); m:=2^p-1; return 2^(2*p+1)*3*m^2; end:
-
Mathematica
f[p_] := 2^(2p + 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 22 2020 *)
Comments