cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330839 Numbers of the form 2^(2*p+1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

18816, 5904384, 1585545216, 27015001097109504, 1770860409581431947264, 453345452974878297686016, 127605887476509680055039087507161481216, 169617318218724895492876988148194847148938611392467719301966609041193959424
Offset: 1

Views

Author

Walter Kehowski, Jan 21 2020

Keywords

Comments

Also numbers with power-spectral basis {M_p^2*(M_p+2)^2, 4*M_p^2*(M_p+1)^2, (M_p^2-1)^2}, where by power-spectral basis we mean a spectral basis that consists of primes and powers. The first element of the power-spectral basis is A330819(n+1), the second element is A330840(n+1), and the third element is A330820(n+1).
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020

Examples

			a(1) = 2^(2*3+1) * 3 * 7^2 = 18816, and 18816 has spectral basis {63^2, 112^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n+1);
      m:=2^p-1;
      return 2^(2*p+1)*3*m^2;
    end:
  • Mathematica
    f[p_] := 2^(2p + 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 22 2020 *)

Formula

a(n) = A330818(n+1) * 3 * A133049(n+1).