cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332231 a(n) = 1/n! * ((n+1)*n)!/Gamma(1 + (n+1)*n/2) * Gamma(1 + (n-1)*n/2)/((n-1)*n)!.

Original entry on oeis.org

1, 2, 30, 924, 41990, 2521260, 188296108, 16825310040, 1750702260294, 207921866100300, 27755558583300548, 4114068719809705800, 670456479908731386780, 119149476568133242798840, 22932161636278362035091480
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2020

Keywords

Crossrefs

Main diagonal of A330843.

Programs

  • Mathematica
    Table[Sum[Binomial[(n + 1)*n, k]*Binomial[n^2 - k - 1, n - k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Feb 08 2020 *)
    Table[Binomial[n*(n+1), 2*n] * Binomial[2*n, n] / Binomial[n*(n+1)/2, n], {n, 0, 15}] (* Vaclav Kotesovec, Feb 08 2020 *)
  • PARI
    {a(n) = sum(k=0, n, binomial((n+1)*n, k)*binomial(n^2-k-1,n-k))}

Formula

a(n) = Sum_{k=0..n} binomial((n+1)*n,k) * binomial(n^2-k-1,n-k).
From Vaclav Kotesovec, Feb 08 2020: (Start)
a(n) ~ 2^(n - 1/2) * exp(n) * n^(n - 1/2) / sqrt(Pi).
a(n) = binomial(n*(n+1), 2*n) * binomial(2*n, n) / binomial(n*(n+1)/2, n). (End)

A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364519.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that the unsigned version of row 0 (the central binomial numbers A000984) and row 2 satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0   1      2        3           4             5
  - + - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1  -2      6      -20          70          -252   ... see A000984
  1 |  1   0    -10        0         198             0   ... see A211419
  2 |  1   6     70      924       12870        184756   ... A001448
  3 |  1  16    630    28672     1385670      69206016   ... A091496
  4 |  1  30   2310   204204    19122246    1848483780   ... A061162
  5 |  1  48   6006   860160   130378950   20392706048   ... A276098
  6 |  1  70  12870  2704156   601080390  137846528820   ... A001448 bisected
  7 |  1  96  24310  7028736  2149374150  678057476096   ... A276099
		

Crossrefs

Cf. A000984 (row 0 unsigned), A211419 (row 1 unsigned without 0's), A001448 (row 2), A091496 (row 3), A061162 (row 4), A276098 (row 5), A001448 bisected (row 6), A276099 (row 7).

Programs

  • Maple
    T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).

A364519 Square array read by ascending antidiagonals: T(n,k) = [x^(3*k)] ( (1 + x)^(n+3)/(1 - x)^(n-3) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, -4, -20, 1, 0, 28, 0, 1, 20, -84, -220, 924, 1, 64, 924, 0, 1820, 0, 1, 140, 12012, 48620, 16796, -15504, -48620, 1, 256, 60060, 2621440, 2704156, 0, 134596, 0, 1, 420, 204204, 29745716, 608435100, 155117520, -3801900, -1184040, 2704156, 1, 640, 554268, 187432960, 15628090140, 146028888064, 9075135300, 0, 10518300, 0
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364518.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431).
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that A005810, the unsigned version of row 1, satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.

Examples

			Square array begins:
 n\k| 0    1       2          3             4                5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 | 1    0     -20          0           924                0  ... see A066802
  1 | 1   -4      28       -220          1820           -15504  ... see A005810
  2 | 1    0     -84          0         16796                0
  3 | 1   20     924      48620       2704156        155117520  ... A066802
  4 | 1   64   12012    2621440     608435100     146028888064  ... A364520
  5 | 1  140   60060   29745716   15628090140    8480843582640  ... A211420
		

Crossrefs

Cf. A066802 (row 3, also row 0 unsigned and without 0's), A005810 (row 1 unsigned), A364520 (row 4), A211420 (row 5).

Programs

  • Maple
    T(n,k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..3*k} binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j).
For n >= 3, T(n,k) = binomial(n*k-1,3*k) * hypergeom([-(n+3)*k, -3*k], [1 - n*k], -1) = ((n+3)*k)!*((n-3)*k/2)!/(((n+3)*k/2)!*((n-3)*k)!*(3*k)!) by Kummer's Theorem.
The row generating functions are algebraic functions over the field of rational functions Q(x).
Showing 1-3 of 3 results.