cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330893 Numbers whose set of divisors contains a Pythagorean quadruple.

Original entry on oeis.org

42, 72, 84, 126, 144, 156, 168, 198, 210, 216, 252, 288, 294, 312, 330, 336, 342, 360, 378, 396, 420, 432, 462, 468, 504, 546, 570, 576, 588, 594, 624, 630, 648, 660, 672, 684, 714, 720, 756, 780, 792, 798, 840, 864, 882, 900, 924, 930, 936, 966, 990, 1008, 1026
Offset: 1

Views

Author

Michel Lagneau, May 01 2020

Keywords

Comments

A Pythagorean quadruple (x, y, z, m) is a set of positive integers that satisfy x^2 + y^2 + z^2 = m^2.
The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, ... (see the sequence A330894).
It is interesting to note that each set of divisors of a(n) contains m primitive Pythagorean quadruples for some n, m = 1, 2,...
Examples:
- The set of divisors of a(1)= 42 contains only one primitive Pythagorean quadruple: (2, 3, 6, 7).
- The set of divisors of a(9) = 210 contains two primitive Pythagorean quadruples: (2, 3, 6, 7) and (2, 5, 14, 15).
- The set of divisors of a(21) = 420 contains three primitive Pythagorean quadruples: (2, 3, 6, 7), (2, 5, 14, 15) and (4, 5, 20, 21).
If k is in the sequence then so is m*k for m > 1.
Assumes the elements (x,y,z,m) in a quadruple are distinct divisors, as otherwise 6 would be in the sequence with 1^2+2^2+2^2=3^2. - Chai Wah Wu, Nov 16 2020

Examples

			168 is in the sequence because the set of divisors  {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 3 to 1200 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        od:
        if it>0 then
        printf(`%d, `,n):
        else fi:
       od:
  • Mathematica
    nq[n_] := If[ Mod[n,6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* Giovanni Resta, May 04 2020 *)
  • PARI
    isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)););););} \\ Michel Marcus, Nov 16 2020

Formula

a(n) == 0 (mod 6).