A330893 Numbers whose set of divisors contains a Pythagorean quadruple.
42, 72, 84, 126, 144, 156, 168, 198, 210, 216, 252, 288, 294, 312, 330, 336, 342, 360, 378, 396, 420, 432, 462, 468, 504, 546, 570, 576, 588, 594, 624, 630, 648, 660, 672, 684, 714, 720, 756, 780, 792, 798, 840, 864, 882, 900, 924, 930, 936, 966, 990, 1008, 1026
Offset: 1
Keywords
Examples
168 is in the sequence because the set of divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive.
Links
- Eric Weisstein's World of Mathematics, Pythagorean Quadruples.
Programs
-
Maple
with(numtheory): for n from 3 to 1200 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,n): else fi: od:
-
Mathematica
nq[n_] := If[ Mod[n,6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* Giovanni Resta, May 04 2020 *)
-
PARI
isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)););););} \\ Michel Marcus, Nov 16 2020
Formula
a(n) == 0 (mod 6).
Comments