A330926 a(n) = Sum_{k=1..n} (ceiling(n/k) mod 2).
1, 1, 2, 1, 3, 2, 3, 2, 5, 3, 4, 3, 6, 5, 6, 3, 7, 6, 7, 6, 9, 6, 7, 6, 11, 9, 10, 7, 10, 9, 10, 9, 14, 11, 12, 9, 13, 12, 13, 10, 15, 14, 15, 14, 17, 12, 13, 12, 19, 17, 18, 15, 18, 17, 18, 15, 20, 17, 18, 17, 22, 21, 22, 17, 23, 20, 21, 20, 23, 20, 21, 20, 27, 26, 27, 22, 25, 22, 23, 22
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
b:= n-> add((-1)^d, d=numtheory[divisors](n)): a:= proc(n) option remember; `if`(n>0, 1+b(n-1)+a(n-1), 0) end: seq(a(n), n=1..80); # Alois P. Heinz, May 25 2020
-
Mathematica
Table[Sum[Mod[Ceiling[n/k], 2], {k, 1, n}], {n, 1, 80}] Table[n - Sum[DivisorSum[k, (-1)^(# + 1) &], {k, 1, n - 1}], {n, 1, 80}] nmax = 80; CoefficientList[Series[x/(1 - x) (1 + Sum[x^(2 k)/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sum(k=1, n, ceil(n/k) % 2); \\ Michel Marcus, May 25 2020
-
Python
from math import isqrt def A330926(n): return n+(s:=isqrt(n-1))**2-((t:=isqrt(m:=n-1>>1))**2<<1)-(sum((n-1)//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023
Comments