A330927 Numbers k such that both k and k + 1 are Niven numbers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 80, 110, 111, 132, 152, 200, 209, 224, 399, 407, 440, 480, 510, 511, 512, 629, 644, 735, 800, 803, 935, 999, 1010, 1011, 1014, 1015, 1016, 1100, 1140, 1160, 1232, 1274, 1304, 1386, 1416, 1455, 1520, 1547, 1651, 1679, 1728, 1853
Offset: 1
Examples
1 is a term since 1 and 1 + 1 = 2 are both Niven numbers.
References
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Curtis Cooper and Robert E. Kennedy, On consecutive Niven numbers, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
- Helen G. Grundman, Sequences of consecutive Niven numbers, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
- Wikipedia, Harshad number.
- Brad Wilson, Construction of 2n consecutive n-Niven numbers, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
Crossrefs
Programs
-
Magma
f:=func
; a:=[]; for k in [1..2000] do if forall{m:m in [0..1]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020 -
Mathematica
nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; nq1 = nivenQ[1]; seq = {}; Do[nq2 = nivenQ[k]; If[nq1 && nq2, AppendTo[seq, k - 1]]; nq1 = nq2, {k, 2, 2000}]; seq SequencePosition[Table[If[Divisible[n,Total[IntegerDigits[n]]],1,0],{n,2000}],{1,1}][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
-
Python
from itertools import count, islice def agen(): # generator of terms h1, h2 = 1, 2 while True: if h2 - h1 == 1: yield h1 h1, h2 = h2, next(k for k in count(h2+1) if k%sum(map(int, str(k))) == 0) print(list(islice(agen(), 52))) # Michael S. Branicky, Mar 17 2024
Comments