cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
Offset: 1

Views

Author

Keywords

Comments

Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
A070635(a(n)) = 0. A038186 is a subsequence. - Reinhard Zumkeller, Mar 10 2008
A049445 is a subsequence of this sequence. - Ctibor O. Zizka, Sep 06 2010
Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2011
A001101, the Moran numbers, are a subsequence. - Reinhard Zumkeller, Jun 16 2011
A140866 gives the number of terms <= 10^k. - Robert G. Wilson v, Oct 16 2012
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
From Amiram Eldar, Oct 02 2023: (Start)
Named "Harshad numbers" by the Indian recreational mathematician Dattatreya Ramchandra Kaprekar (1905-1986) in 1955. The meaning of the word is "giving joy" in Sanskrit.
Named "Niven numbers" by Kennedy et al. (1980) after the Canadian-American mathematician Ivan Morton Niven (1915-1999). During a lecture given at the 5th Annual Miami University Conference on Number Theory in 1977, Niven mentioned a question of finding a number that equals twice the sum of its digits, which appeared in the children's pages of a newspaper. (End)

Examples

			195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
		

References

  • Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
  • D. R. Kaprekar, Multidigital Numbers, Scripta Math., Vol. 21 (1955), p. 27.
  • Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
  • Robert E. Kennedy, Terry A. Goodman, and Clarence H. Best, Mathematical Discovery and Niven Numbers, The MATYC Journal, Vol. 14, No. 1 (1980), pp. 21-25.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.

Crossrefs

Cf. A001102 (a subsequence).
Cf. A118363 (for factorial-base analog).
Cf. A330927, A154701, A141769, A330928, A330929, A330930 (start of runs of 2, 3, ..., 7 consecutive Niven numbers).

Programs

  • GAP
    Filtered([1..230],n-> n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # Muniru A Asiru
  • Haskell
    a005349 n = a005349_list !! (n-1)
    a005349_list = filter ((== 0) . a070635) [1..]
    -- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
    
  • Magma
    [n: n in [1..250] | n mod &+Intseq(n) eq 0];  // Bruno Berselli, May 28 2011
    
  • Magma
    [n: n in [1..250] | IsIntegral(n/&+Intseq(n))];  // Bruno Berselli, Feb 09 2016
    
  • Maple
    s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # Emeric Deutsch
  • Mathematica
    harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
    Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
  • PARI
    is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
    
  • Python
    A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
    
  • Sage
    [n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
    

A154701 Numbers k such that k, k + 1 and k + 2 are 3 consecutive Harshad numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 110, 510, 511, 1010, 1014, 1015, 2022, 2023, 2464, 3030, 3031, 4912, 5054, 5831, 7360, 8203, 9854, 10010, 10094, 10307, 10308, 11645, 12102, 12103, 12255, 12256, 13110, 13111, 13116, 13880, 14704, 15134, 17152, 17575, 18238, 19600, 19682
Offset: 1

Views

Author

Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 14 2009, Jan 15 2009

Keywords

Comments

Harshad numbers are also known as Niven numbers.
Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite. - Amiram Eldar, Jan 03 2020

Examples

			110 is a term since 110 is divisible by 1 + 1 + 0 = 2, 111 is divisible by 1 + 1 + 1 = 3, and 112 is divisible by 1 + 1 + 2 = 4.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Programs

  • C
    #include 
    #include 
    int is_harshad(int n){
      int i,j,count=0;
      i=n;
      while(i>0){
        count=count+i%10;
        i=i/10;
      }
      return n%count==0?1:0;
    }
    main(){
      int k;
      clrscr();
      for(k=1;k<=30000;k++)
        if(is_harshad(k)&&is_harshad(k+1)&&is_harshad(k+2))
          printf("%d,",k);
      getch();
      return 0;
    }
    
  • Magma
    f:=func; a:=[]; for k in [1..20000] do  if forall{m:m in [0..2]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Maple
    Res:= NULL: count:= 0:
    state:= 1:
    L:= [1]:
    for n from 2 while count < 100 do
      L[1]:=L[1]+1;
      for k from 1 while L[k]=10 do L[k]:= 0;
        if k = nops(L) then L:= [0$nops(L),1]; break
        else L[k+1]:= L[k+1]+1 fi
      od:
      s:= convert(L,`+`);
      if n mod s = 0 then
         state:= min(state+1,3);
         if state = 3 then count:= count+1; Res:= Res, n-2; fi
      else state:= 0
      fi
    od:
    Res; # Robert Israel, Feb 01 2019
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[3]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 2]], {k, 3, 2*10^4}]; seq (* Amiram Eldar, Jan 03 2020 *)
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        h1, h2, h3 = 1, 2, 3
        while True:
            if h3 - h1 == 2: yield h1
            h1, h2, h3 = h2, h3, next(k for k in count(h3+1) if k%sum(map(int, str(k))) == 0)
    print(list(islice(agen(), 45))) # Michael S. Branicky, Mar 17 2024

A330931 Numbers k such that both k and k + 1 are Niven numbers in base 2 (A049445).

Original entry on oeis.org

1, 20, 68, 80, 115, 155, 184, 204, 260, 272, 284, 320, 344, 355, 395, 404, 424, 464, 555, 564, 595, 623, 624, 636, 664, 675, 804, 835, 846, 847, 864, 875, 888, 904, 972, 1028, 1040, 1075, 1088, 1124, 1164, 1182, 1211, 1224, 1239, 1266, 1280, 1304, 1315, 1424
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cai proved that there are infinitely many runs of 4 consecutive Niven numbers in base 2. Therefore this sequence is infinite.

Examples

			20 is a term since 20 and 20 + 1 = 21 are both Niven numbers in base 2.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 382.

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for k in [1..1500] do  if forall{m:m in [0..1]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Mathematica
    binNivenQ[n_] := Divisible[n, Total @ IntegerDigits[n, 2]]; bnq1 = binNivenQ[1]; seq = {}; Do[bnq2 = binNivenQ[k]; If[bnq1 && bnq2, AppendTo[seq, k - 1]]; bnq1 = bnq2, {k, 2, 10^4}]; seq
  • Python
    def sbd(n): return sum(map(int, str(bin(n)[2:])))
    def niv2(n): return n%sbd(n) == 0
    def aupto(nn): return [k for k in range(1, nn+1) if niv2(k) and niv2(k+1)]
    print(aupto(1424)) # Michael S. Branicky, Jan 20 2021

A141769 Beginning of a run of 4 consecutive Niven (or Harshad) numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 510, 1014, 2022, 3030, 10307, 12102, 12255, 13110, 60398, 61215, 93040, 100302, 101310, 110175, 122415, 127533, 131052, 131053, 196447, 201102, 202110, 220335, 223167, 245725, 255045, 280824, 306015, 311232, 318800, 325600, 372112, 455422
Offset: 1

Views

Author

Sergio Pimentel, Sep 15 2008

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite. - Amiram Eldar, Jan 03 2020

Examples

			510 is in the sequence because 510, 511, 512 and 513 are all Niven numbers.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Cf. A005349, A330927, A154701, A330928, A330929, A330930, A060159 (start of run of 1, 2, ..., 7, exactly n consecutive Harshad numbers).
Cf. A330933, A328211, A328215 (analog for base 2, Zeckendorf- resp. Fibonacci-Niven variants).

Programs

  • Magma
    f:=func; a:=[]; for k in [1..500000] do  if forall{m:m in [0..3]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[4]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 3]], {k, 4, 5*10^5}]; seq (* Amiram Eldar, Jan 03 2020 *)
  • PARI
    {A141769_first( N=50, L=4, a=List())= for(n=1,oo, n+=L; for(m=1,L, n--%sumdigits(n) && next(2)); listput(a,n); N--|| break);a} \\ M. F. Hasler, Jan 03 2022
    
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        h1, h2, h3, h4 = 1, 2, 3, 4
        while True:
            if h4 - h1 == 3: yield h1
            h1, h2, h3, h4, = h2, h3, h4, next(k for k in count(h4+1) if k%sum(map(int, str(k))) == 0)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 17 2024

Formula

This A141769 = { A005349(k) | A005349(k+3) = A005349(k)+3 }. - M. F. Hasler, Jan 03 2022

Extensions

More terms from Amiram Eldar, Jan 03 2020

A331086 Positive numbers k such that k and k + 1 are both negaFibonacci-Niven numbers (A331085).

Original entry on oeis.org

1, 4, 5, 9, 12, 13, 26, 68, 86, 87, 88, 89, 93, 99, 155, 176, 177, 183, 195, 212, 230, 231, 232, 233, 237, 243, 255, 320, 321, 327, 384, 395, 411, 415, 424, 464, 465, 471, 475, 484, 515, 544, 575, 591, 602, 644, 655, 656, 744, 824, 875, 894, 924, 1043, 1115, 1127
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Fibonacci numbers F(6*k - 1) and F(6*k) are terms.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[n]];
    nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A333427 Numbers k such that k and k+1 are both primorial base Niven numbers (A333426).

Original entry on oeis.org

1, 8, 24, 32, 44, 64, 65, 132, 212, 224, 244, 245, 296, 368, 424, 425, 468, 560, 656, 720, 728, 737, 869, 1056, 1088, 1416, 1572, 1728, 2100, 2312, 2324, 2344, 2345, 2524, 2525, 2568, 2600, 2672, 2820, 2960, 3032, 3132, 3156, 3200, 3288, 3392, 3444, 4096, 4424
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			1 is a term since 1 and 2 are both primorial base Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; primNivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n, MixedRadix[bases]]]; q1 = primNivenQ[1]; seq = {}; Do[q2 = primNivenQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, nmax}]; seq

A331820 Positive numbers k such that k and k + 1 are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

1, 2, 3, 8, 14, 15, 20, 32, 35, 56, 62, 63, 68, 80, 90, 95, 124, 125, 128, 174, 184, 185, 215, 224, 244, 245, 248, 254, 255, 260, 272, 275, 300, 304, 305, 320, 335, 342, 468, 469, 484, 485, 512, 515, 544, 545, 552, 575, 594, 636, 720, 762, 784, 785, 804, 846, 896
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both 8 and 8 + 1 = 9 are negabinary-Niven numbers: A039724(8) = 11000 and 1 + 1 + 0 + 0 + 0 = 2 is a divisor of 8, and A039724(9) = 11001 and 1 + 1 + 0 + 0 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A334309 Numbers k such that k and k+1 are both base phi Niven numbers (A334308).

Original entry on oeis.org

1, 15, 35, 90, 95, 231, 644, 728, 944, 1016, 1110, 1331, 1629, 1736, 1770, 1899, 1925, 2232, 2255, 2384, 2456, 2629, 2652, 2760, 3104, 3176, 3288, 3444, 3729, 3789, 3860, 4410, 4415, 4509, 4544, 4718, 4939, 4960, 5229, 5239, 5489, 5789, 5831, 5984, 6039, 6111
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			1 is a term since 1 and 2 are both base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; Select[Range[6000], phiNivenQ[#] && phiNivenQ[# + 1] &]

A342427 Numbers k such that k and k + 1 are both Niven numbers in base 3/2 (A342426).

Original entry on oeis.org

1, 168, 459, 1817, 2196, 2197, 2655, 3128, 3280, 3699, 4199, 4575, 4927, 5184, 5795, 6600, 7215, 7259, 7656, 7657, 8448, 9636, 11304, 11339, 12492, 14160, 14175, 14424, 14805, 15624, 15625, 16335, 16336, 16925, 17802, 19170, 20349, 20811, 21624, 21735, 22197
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			168 is a term since both 168 and 169 are Niven numbers in base 3/2. 168 in base 3/2 is 2120220210 and 2+1+2+0+2+2+0+2+1+0 = 12 is a divisor of 168. 169 in base 3/2 is 2120220211 and 2+1+2+0+2+2+0+2+1+1 = 13 is a divisor of 169.
		

Crossrefs

Subsequence of A342426.
Subsequences: A342428 and A342429.
Similar sequences: A330927 (decimal), A328205 (factorial), A328209 (Zeckendorf), A328213 (lazy Fibonacci), A330931 (binary), A331086 (negaFibonacci), A333427 (primorial), A334309 (base phi), A331820 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[22000], q[#] && q[# + 1] &]

A344342 Numbers k such that k and k + 1 are both Gray-code Niven numbers (A344341).

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 14, 15, 27, 30, 31, 32, 39, 44, 51, 56, 62, 63, 75, 99, 104, 111, 123, 126, 127, 128, 135, 144, 155, 159, 174, 175, 184, 185, 195, 204, 207, 215, 224, 231, 234, 235, 243, 244, 248, 254, 255, 264, 275, 284, 294, 300, 304, 305, 315, 335, 354, 375
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			1 is a term since 1 and 2 are both Gray-code Niven numbers.
		

Crossrefs

Subsequence of: A344341.
Subsequences: A344343 and A344344.
Similar sequences: A330927 (decimal), A328205 (factorial), A328209 (Zeckendorf), A328213 (lazy Fibonacci), A330931 (binary), A331086 (negaFibonacci), A333427 (primorial), A334309 (base phi), A331820 (negabinary), A342427 (base 3/2).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[400], And @@ gcNivenQ[# + {0, 1}] &]
Showing 1-10 of 31 results. Next