cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A330927 Numbers k such that both k and k + 1 are Niven numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 80, 110, 111, 132, 152, 200, 209, 224, 399, 407, 440, 480, 510, 511, 512, 629, 644, 735, 800, 803, 935, 999, 1010, 1011, 1014, 1015, 1016, 1100, 1140, 1160, 1232, 1274, 1304, 1386, 1416, 1455, 1520, 1547, 1651, 1679, 1728, 1853
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.

Examples

			1 is a term since 1 and 1 + 1 = 2 are both Niven numbers.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for k in [1..2000] do  if forall{m:m in [0..1]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; nq1 = nivenQ[1]; seq = {}; Do[nq2 = nivenQ[k]; If[nq1 && nq2, AppendTo[seq, k - 1]]; nq1 = nq2, {k, 2, 2000}]; seq
    SequencePosition[Table[If[Divisible[n,Total[IntegerDigits[n]]],1,0],{n,2000}],{1,1}][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        h1, h2 = 1, 2
        while True:
            if h2 - h1 == 1: yield h1
            h1, h2 = h2, next(k for k in count(h2+1) if k%sum(map(int, str(k))) == 0)
    print(list(islice(agen(), 52))) # Michael S. Branicky, Mar 17 2024

A330932 Starts of runs of 3 consecutive Niven numbers in base 2 (A049445).

Original entry on oeis.org

623, 846, 2358, 4206, 4878, 6127, 6222, 6223, 12438, 16974, 21006, 27070, 31295, 33102, 33103, 35343, 37134, 37630, 37638, 40703, 43263, 45550, 48190, 49230, 52590, 53262, 53263, 56110, 59630, 66198, 66702, 66703, 67878, 69310, 69487, 72655, 74766, 77230, 77958
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cai proved that there are infinitely many runs of 4 consecutive Niven numbers in base 2. Therefore this sequence is infinite.

Examples

			623 is a term since 623, 624 and 625 are all Niven numbers in base 2.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 382.

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for k in [1..80000] do  if forall{m:m in [0..2]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    binNivenQ[n_] := Divisible[n, Total @ IntegerDigits[n, 2]]; bin = binNivenQ /@ Range[3]; seq = {}; Do[bin = Join[Rest[bin], {binNivenQ[k]}]; If[And @@ bin, AppendTo[seq, k - 2]], {k, 3, 8*10^4}]; seq

A330933 Starts of runs of 4 consecutive Niven numbers in base 2 (A049445).

Original entry on oeis.org

6222, 33102, 53262, 66702, 94830, 221550, 268302, 284910, 295182, 300750, 316590, 364110, 379950, 427470, 533950, 554190, 570030, 590862, 617550, 633390, 696750, 791790, 807630, 855150, 870990, 902670, 934350, 1081422, 1140270, 1282830, 1314510, 1330350, 1343502
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cai proved that there are infinitely many runs of 4 consecutive Niven numbers in base 2.
Grundman proved that there are no runs of 5 or more consecutive Niven numbers in base 2.

Examples

			6222 is a term since 6222, 6223, 6224 and 6225 are all Niven numbers in base 2.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 382.

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for k in [1..1400000] do  if forall{m:m in [0..3]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    binNivenQ[n_] := Divisible[n, Total @ IntegerDigits[n, 2]]; bin = binNivenQ /@ Range[4]; seq = {}; Do[bin = Join[Rest[bin], {binNivenQ[k]}]; If[And @@ bin, AppendTo[seq, k - 3]], {k, 4, 10^6}]; seq

A331086 Positive numbers k such that k and k + 1 are both negaFibonacci-Niven numbers (A331085).

Original entry on oeis.org

1, 4, 5, 9, 12, 13, 26, 68, 86, 87, 88, 89, 93, 99, 155, 176, 177, 183, 195, 212, 230, 231, 232, 233, 237, 243, 255, 320, 321, 327, 384, 395, 411, 415, 424, 464, 465, 471, 475, 484, 515, 544, 575, 591, 602, 644, 655, 656, 744, 824, 875, 894, 924, 1043, 1115, 1127
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Fibonacci numbers F(6*k - 1) and F(6*k) are terms.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[n]];
    nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A333427 Numbers k such that k and k+1 are both primorial base Niven numbers (A333426).

Original entry on oeis.org

1, 8, 24, 32, 44, 64, 65, 132, 212, 224, 244, 245, 296, 368, 424, 425, 468, 560, 656, 720, 728, 737, 869, 1056, 1088, 1416, 1572, 1728, 2100, 2312, 2324, 2344, 2345, 2524, 2525, 2568, 2600, 2672, 2820, 2960, 3032, 3132, 3156, 3200, 3288, 3392, 3444, 4096, 4424
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			1 is a term since 1 and 2 are both primorial base Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; primNivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n, MixedRadix[bases]]]; q1 = primNivenQ[1]; seq = {}; Do[q2 = primNivenQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, nmax}]; seq

A331820 Positive numbers k such that k and k + 1 are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

1, 2, 3, 8, 14, 15, 20, 32, 35, 56, 62, 63, 68, 80, 90, 95, 124, 125, 128, 174, 184, 185, 215, 224, 244, 245, 248, 254, 255, 260, 272, 275, 300, 304, 305, 320, 335, 342, 468, 469, 484, 485, 512, 515, 544, 545, 552, 575, 594, 636, 720, 762, 784, 785, 804, 846, 896
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both 8 and 8 + 1 = 9 are negabinary-Niven numbers: A039724(8) = 11000 and 1 + 1 + 0 + 0 + 0 = 2 is a divisor of 8, and A039724(9) = 11001 and 1 + 1 + 0 + 0 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A334309 Numbers k such that k and k+1 are both base phi Niven numbers (A334308).

Original entry on oeis.org

1, 15, 35, 90, 95, 231, 644, 728, 944, 1016, 1110, 1331, 1629, 1736, 1770, 1899, 1925, 2232, 2255, 2384, 2456, 2629, 2652, 2760, 3104, 3176, 3288, 3444, 3729, 3789, 3860, 4410, 4415, 4509, 4544, 4718, 4939, 4960, 5229, 5239, 5489, 5789, 5831, 5984, 6039, 6111
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			1 is a term since 1 and 2 are both base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; Select[Range[6000], phiNivenQ[#] && phiNivenQ[# + 1] &]

A342427 Numbers k such that k and k + 1 are both Niven numbers in base 3/2 (A342426).

Original entry on oeis.org

1, 168, 459, 1817, 2196, 2197, 2655, 3128, 3280, 3699, 4199, 4575, 4927, 5184, 5795, 6600, 7215, 7259, 7656, 7657, 8448, 9636, 11304, 11339, 12492, 14160, 14175, 14424, 14805, 15624, 15625, 16335, 16336, 16925, 17802, 19170, 20349, 20811, 21624, 21735, 22197
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			168 is a term since both 168 and 169 are Niven numbers in base 3/2. 168 in base 3/2 is 2120220210 and 2+1+2+0+2+2+0+2+1+0 = 12 is a divisor of 168. 169 in base 3/2 is 2120220211 and 2+1+2+0+2+2+0+2+1+1 = 13 is a divisor of 169.
		

Crossrefs

Subsequence of A342426.
Subsequences: A342428 and A342429.
Similar sequences: A330927 (decimal), A328205 (factorial), A328209 (Zeckendorf), A328213 (lazy Fibonacci), A330931 (binary), A331086 (negaFibonacci), A333427 (primorial), A334309 (base phi), A331820 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[22000], q[#] && q[# + 1] &]

A344342 Numbers k such that k and k + 1 are both Gray-code Niven numbers (A344341).

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 14, 15, 27, 30, 31, 32, 39, 44, 51, 56, 62, 63, 75, 99, 104, 111, 123, 126, 127, 128, 135, 144, 155, 159, 174, 175, 184, 185, 195, 204, 207, 215, 224, 231, 234, 235, 243, 244, 248, 254, 255, 264, 275, 284, 294, 300, 304, 305, 315, 335, 354, 375
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			1 is a term since 1 and 2 are both Gray-code Niven numbers.
		

Crossrefs

Subsequence of: A344341.
Subsequences: A344343 and A344344.
Similar sequences: A330927 (decimal), A328205 (factorial), A328209 (Zeckendorf), A328213 (lazy Fibonacci), A330931 (binary), A331086 (negaFibonacci), A333427 (primorial), A334309 (base phi), A331820 (negabinary), A342427 (base 3/2).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[400], And @@ gcNivenQ[# + {0, 1}] &]

A351720 Numbers k such that k and k + 1 are both lazy-Lucas-Niven numbers (A351719).

Original entry on oeis.org

1, 175, 216, 399, 656, 729, 737, 759, 1000, 1991, 2716, 2820, 2925, 3970, 4068, 4224, 4499, 4641, 5316, 5819, 6565, 6720, 6902, 7890, 9840, 10751, 11843, 12194, 12614, 13034, 13272, 14909, 15483, 15495, 16029, 17234, 17444, 17731, 18074, 18885, 19305, 19669, 20188
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			175 is a term since 175 and 176 are both lazy-Lucas-Niven numbers: the maximal Lucas representation of 175, A130311(175) = 1110110101, has 7 1's and 175 is divisible by 5, and the maximal Lucas representation of 176, A130311(7) = 1110110111, has 8 1's and 176 is divisible by 8.
		

Crossrefs

Subsequence of A351719.
A351721 is a subsequence.

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[10^6], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[#*Reverse@LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; SequencePosition[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], {True, True}][[;; , 1]]
Showing 1-10 of 32 results. Next