A331008 Numbers m such that (11*prime(m)) mod Pi > (11*prime(m+1)) mod Pi.
71, 179, 274, 367, 452, 539, 623, 705, 786, 869, 943, 1024, 1106, 1183, 1262, 1335, 1405, 1483, 1562, 1636, 1705, 1780, 1860, 1929, 2000, 2074, 2146, 2214, 2286, 2355, 2431, 2502, 2576, 2645, 2717, 2781, 2849, 2918, 2990, 3059, 3130, 3201, 3262, 3330, 3399, 3462, 3538
Offset: 1
Keywords
Examples
a(1) is 71 because (11*prime(71)) mod Pi = ~3.133072, a larger value than (11*prime(72)) mod Pi = ~0.018034. For any other primes p and q such that p < q < prime(71) we can see that (11*prime(p)) mod Pi < (11*prime(q)) mod Pi. a(2) is 179 because (11*prime(179)) mod Pi = ~3.133735, a larger value than (11*prime(180)) mod Pi = ~0.018697. For any other primes p and q such that prime(71) < p < q < prime(179) we can see that (11*prime(p)) mod Pi < (11*prime(q)) mod Pi.
Links
- Eric Weisstein's World of Mathematics, Convergent.
- Andres Cicuttin, Mathematica program for exploration of patterns related to A331008
Programs
-
Maple
q:= n-> (f-> is(f(11*ithprime(n))>f(11*ithprime(n+1))))(k-> k-floor(k/Pi)*Pi): select(q, [$1..4000])[]; # Alois P. Heinz, Jun 12 2023
-
Mathematica
Flatten@Position[Differences[N[Mod[11*Prime[Range[2^13]], Pi], 24]], x_ /; x < 0] Select[Range[3700],Mod[11Prime[#],Pi]>Mod[11Prime[#+1],Pi]&] (* Harvey P. Dale, Jan 30 2025 *)
-
PARI
isok(k) = 11*prime(k) % Pi > 11*prime(k+1) % Pi; \\ Michel Marcus, Jun 12 2023
Comments