cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331254 Triangles with integer sides i <= j <= k sorted by radius of circumcircle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331255 and A331256.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 2, 3, 4, 3, 1, 2, 4, 3, 2, 3, 4, 5, 3, 1, 4, 4, 2, 3, 5, 4, 2, 5, 3, 6, 5, 4, 1, 3, 2, 4, 5, 3, 4, 6, 5, 2, 6, 4, 5, 1, 6, 2, 3, 3, 5, 7, 3, 4, 4, 4, 6, 5, 5, 7, 6, 2, 7, 4, 6, 1, 5, 5, 2, 6, 3, 3, 7, 6, 4, 8, 5, 4, 7, 3, 5, 6, 8
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of triangles begins:
   n
   |     R^2 = A331227(n)/A331228(n)
   |     |    i .... (this sequence)
   |     |    | j .. (A331255)
   |     |    | | k  (A331256)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4   16/ 7  2 2 3
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8   81/20  3 3 4
   9  256/63  1 4 4
  10   64/15  2 3 4
  11   64/15  2 4 4
  12  256/55  3 4 4
		

Crossrefs

Cf. A331255 (middle side), A331256 (longest side).

A331255 Triangles with integer sides i <= j <= k sorted by radius of circumcircle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the middle side j. The other sides are in A331254 and A331256.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 4, 5, 4, 3, 5, 5, 5, 6, 4, 5, 6, 6, 5, 6, 5, 6, 4, 6, 5, 6, 7, 6, 7, 5, 6, 7, 7, 6, 7, 6, 7, 7, 6, 8, 6, 8, 5, 7, 7, 7, 8, 4, 6, 8, 7, 5, 8, 7, 8, 7, 8, 8, 7, 9, 7, 8, 9, 6, 8, 9, 7, 8, 9, 8, 9, 7, 8, 6, 6, 9, 8
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			See A331254.
		

Crossrefs

Cf. A331227, A331228 (squared radius of circumcircle), A331254 (shortest side), A331256 (longest side).

A070080 Smallest side of integer triangles [a(n) <= A070081(n) <= A070082(n)], sorted by perimeter, lexicographically ordered.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 3, 2, 3, 4, 1, 2, 3, 3, 4, 2, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 3, 4, 4, 5, 5, 2, 3, 4, 4, 5, 5, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 2, 3, 4, 4, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Cf. A316841, A316843, A316844, A316845 (sides (i,j,k) with j + k > i >= j >= k >= 1).
Cf. A331244, A331245, A331246 (similar, but triangles sorted by radius of enclosing circle), A331251, A331252, A331253 (triangles sorted by area), A331254, A331255, A331256 (triangles sorted by radius of circumcircle).

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 1]] (* Jean-François Alcover, Jun 12 2012, updated Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070082(n) - A070081(n).

A140247 Decimal expansion of 8/sqrt(15).

Original entry on oeis.org

2, 0, 6, 5, 5, 9, 1, 1, 1, 7, 9, 7, 7, 2, 8, 9, 0, 0, 5, 4, 2, 8, 9, 4, 1, 5, 4, 6, 5, 5, 0, 6, 1, 3, 1, 2, 5, 7, 7, 7, 5, 5, 8, 2, 4, 2, 8, 2, 2, 1, 8, 1, 7, 7, 4, 1, 8, 0, 0, 3, 9, 3, 4, 1, 9, 2, 7, 1, 9, 0, 9, 8, 2, 3, 6, 6, 3, 8, 8, 8, 1, 7, 8, 7, 6, 9, 5, 3, 2, 6, 7, 6, 5, 7, 9, 5, 9, 2, 0, 9, 5, 5, 5, 3, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Circumradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			2.06559111797728900542894154655061312577755824282218177418003934192719098236...
		

Crossrefs

Equals sqrt(A331227(10)/A331228(10)) = sqrt(A331227(11)/A331228(11)), A331254, A331255, A331256 (list of triangles with integer sides sorted by circumradius).

Programs

  • Mathematica
    RealDigits[8/Sqrt[15],10,120][[1]] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    8/sqrt(15)

Formula

8/sqrt(15) = 8/A010472.

A331244 Triangles with integer sides i <= j <= k sorted by radius of enclosing circle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331245 and A331246.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 4, 2, 3, 3, 1, 2, 4, 3, 4, 5, 2, 3, 3, 4, 1, 4, 2, 3, 5, 4, 5, 6, 2, 3, 3, 4, 4, 5, 4, 1, 2, 5, 3, 4, 6, 5, 6, 2, 3, 3, 4, 4, 5, 5, 4, 1, 6, 2, 5, 7, 3, 4, 6, 5, 7, 6, 7, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 1, 5, 2, 3, 7, 6, 4
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Comments

The enclosing circle differs from the circumcircle by limiting the radius to (longest side)/2 for obtuse triangles, i.e., those with i^2 + j^2 < k^2.

Examples

			List of triangles begins:
   n
   |     R^2
   |     |    i .... (this sequence)
   |     |    | j .. (A331245)
   |     |    | | k  (A331246)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4    9/ 4  2 2 3  obtuse
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8    4/ 1  2 3 4  obtuse
   9   81/20  3 3 4
  10  256/63  1 4 4
  11   64/15  2 4 4
  12  256/55  3 4 4
  13   16/ 3  4 4 4
  14   25/ 4  2 4 5  obtuse
  15   25/ 4  3 3 5  obtuse
  16   25/ 4  3 4 5
  17  625/99  1 5 5
		

Crossrefs

Showing 1-5 of 5 results.