A331343 a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.
0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
Offset: 1
Keywords
Links
- Wikipedia, Wolstenholme's theorem.
Programs
-
Magma
[Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
-
Mathematica
a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
-
PARI
a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020
Comments