cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331429 Expansion of x^2*(10-5*x+x^2)/((1-x)^4*(1-x^2)).

Original entry on oeis.org

0, 0, 10, 35, 91, 189, 351, 594, 946, 1430, 2080, 2925, 4005, 5355, 7021, 9044, 11476, 14364, 17766, 21735, 26335, 31625, 37675, 44550, 52326, 61074, 70876, 81809, 93961, 107415, 122265, 138600, 156520, 176120, 197506, 220779, 246051, 273429, 303031, 334970, 369370, 406350, 446040, 488565, 534061, 582659, 634501
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2020

Keywords

Comments

Column 2 of triangle in A331432.

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.

Crossrefs

Cf. A331432.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0] cat Coefficients(R!( x^2*(10-5*x+x^2)/((1-x)^4*(1-x^2)))); // Vincenzo Librandi, Jan 17 2020
    
  • Mathematica
    CoefficientList[Series[x^2(10-5x+x^2)/((1-x)^4(1-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jan 17 2020 *)
    Table[(n(n+3)(n^2+3n-2) +4(-1)^n -4)/8, {n, 0, 50}] (* Bruno Berselli, Jan 17 2020 *)
  • Sage
    [n*(n+3)*(n^2 +3*n -2)/8 - (n%2) for n in (0..50)] # G. C. Greubel, Mar 22 2022

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>5. - Vincenzo Librandi, Jan 17 2020
From Bruno Berselli, Jan 17 2020: (Start)
a(n) = (n*(n + 3)*(n^2 + 3*n - 2) + 4*(-1)^n - 4)/8. Therefore:
a(n) = n*(n + 3)*(n^2 + 3*n - 2)/8 if n is even,
a(n) = n*(n + 3)*(n^2 + 3*n - 2)/8 - 1 if n is odd. (End)
E.g.f.: (1/8)*(4*exp(-x) + (-4 + 8*x + 32*x^2 + 12*x^3 + x^4)*exp(x)). - G. C. Greubel, Mar 22 2022