A331437 Triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n edges and k vertices, n >= 0, 1 <= k <= n+1.
1, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 96, 0, 0, 0, 1, 0, 120, 427, 0, 0, 0, 0, 20, 180, 1260, 6448, 0, 0, 0, 0, 15, 420, 3780, 23520, 56961, 0, 0, 0, 0, 10, 700, 10850, 79800, 347760, 892720, 0, 0, 0, 0, 1, 837, 24045, 269360, 1655640, 6400800, 11905091
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 0, 0; 0, 0, 0, 4; 0, 0, 0, 0, 5; 0, 0, 0, 0, 0, 96; 0, 0, 0, 1, 0, 120, 427; 0, 0, 0, 0, 20, 180, 1260, 6448; 0, 0, 0, 0, 15, 420, 3780, 23520, 56961; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n = 0..50)
- D. M. Jackson and J. W. Reilly, The enumeration of homeomorphically irreducible labeled graphs, J. Combin. Theory, B 19 (1975), 272-286. See Table III.
Crossrefs
Programs
-
PARI
\\ See Jackson & Reilly for e.g.f. H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)} T(n) = {Mat([Col(p, -n) | p<-Vec(serlaplace(log(H(n,y + O(y^n)))))])} { my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 24 2020
Extensions
Terms a(44) and beyond from Andrew Howroyd, Jan 24 2020
Comments