A343088
Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 0, 0, 1, 16, 0, 0, 0, 15, 125, 0, 0, 0, 6, 222, 1296, 0, 0, 0, 1, 205, 3660, 16807, 0, 0, 0, 0, 120, 5700, 68295, 262144, 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969, 0, 0, 0, 0, 10, 4945, 258125, 4483360, 33779340, 100000000
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 3;
0, 0, 1, 16;
0, 0, 0, 15, 125;
0, 0, 0, 6, 222, 1296;
0, 0, 0, 1, 205, 3660, 16807;
0, 0, 0, 0, 120, 5700, 68295, 262144;
0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969;
...
Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11:
A057500,
A061540,
A061541,
A061542,
A061543,
A096117,
A061544 A096150,
A096224,
A182294,
A182295,
A182371.
-
row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 03 2022, after Andrew Howroyd *)
-
Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))}
{ for(n=0, 8, print(Row(n))) }
A003515
Number of series-reduced connected labeled graphs with n nodes.
Original entry on oeis.org
0, 1, 1, 0, 5, 51, 3634, 374119, 73161880, 26545249985, 17904840957826, 22602069719494379, 53938857227326533032, 246107945479472758874483, 2170331943503938546383205218, 37340982087637629911717846092591, 1262915556964772342158139988356979872
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
\\ See Jackson & Reilly for e.g.f.
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log((exp(x/2 - x^2/4 + A)/sqrt(1 + x + A))*sum(k=0, n, (2*exp(-x/(1+x) + A))^binomial(k,2) * (x*exp((x^2 + A)/(2*(1 + x))))^k / k!))), -(n+1))} \\ Andrew Howroyd, Jan 24 2020
A331438
Irregular triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n vertices and k edges, n >= 1, 0 <= k <= n*(n-1)/2.
Original entry on oeis.org
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 5, 0, 0, 20, 15, 10, 1, 0, 0, 0, 0, 0, 96, 120, 180, 420, 700, 837, 765, 395, 105, 15, 1, 0, 0, 0, 0, 0, 0, 427, 1260, 3780, 10850, 24045, 44814, 68040, 80955, 70500, 43232, 18774, 5880, 1330, 210, 21, 1, 0, 0, 0, 0, 0, 0, 0, 6448, 23520, 79800, 269360, 782880, 1956136, 4203360, 7610340, 11365676
Offset: 1
Triangle begins:
1,
0,1,
0,0,0,0,
0,0,0,4,0,0,1,
0,0,0,0,5,0,0,20,15,10,1,
0,0,0,0,0,96,120,180,420,700,837,765,395,105,15,1,
0,0,0,0,0,0,427,1260,3780,10850,24045,44814,68040,80955,70500,43232,18774,5880,1330,210,21,1,
0,0,0,0,0,0,0,6448,23520,79800,269360,782880,1956136,4203360,7610340,11365676,...,
...
-
\\ See Jackson & Reilly for e.g.f.
H(n,y)={my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
Row(n)={Vecrev(n!*polcoef(log(H(n,y)), n), binomial(n,2)+1)}
{ for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Jan 24 2020
A060514
Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 0, 0, 1, 6, 3, 4, 0, 0, 1, 1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1, 1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1, 1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330
Offset: 0
Triangle begins:
[1],
[1],
[1, 1],
[1, 3, 0, 0],
[1, 6, 3, 4, 0, 0, 1],
[1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1],
[1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1],
[1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330, 210, 21, 1],
...
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
A331584
Number of series-reduced connected labeled graphs with n edges.
Original entry on oeis.org
1, 1, 0, 4, 5, 96, 548, 7908, 84696, 1331840, 20255774, 372819387, 7170089146, 154824436840, 3558826861734, 88938133663711, 2367074592366594, 67402755251544804, 2034875403034891874, 65102692993820702700, 2196725886835707259041, 78036983096041464230268
Offset: 0
-
\\ See Jackson & Reilly link for e.g.f.
H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
seq(n)={Vec(subst(Pol(serlaplace(log(H(n, y+O(y^n))))), x, 1))}
Showing 1-5 of 5 results.
Comments