cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A343088 Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 1, 16, 0, 0, 0, 15, 125, 0, 0, 0, 6, 222, 1296, 0, 0, 0, 1, 205, 3660, 16807, 0, 0, 0, 0, 120, 5700, 68295, 262144, 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969, 0, 0, 0, 0, 10, 4945, 258125, 4483360, 33779340, 100000000
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 1, 16;
  0, 0, 0, 15, 125;
  0, 0, 0,  6, 222, 1296;
  0, 0, 0,  1, 205, 3660,  16807;
  0, 0, 0,  0, 120, 5700,  68295,  262144;
  0, 0, 0,  0,  45, 6165, 156555, 1436568, 4782969;
  ...
		

Crossrefs

Main diagonal is A000272.
Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11: A057500, A061540, A061541, A061542, A061543, A096117, A061544 A096150, A096224, A182294, A182295, A182371.
Row sums are A322137.
Column sums are A001187.
Cf. A054923 (unlabeled), A062734 (transpose), A290776 (multigraphs), A322147 (loops allowed), A331437 (series-reduced).

Programs

  • Mathematica
    row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest;
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 03 2022, after Andrew Howroyd *)
  • PARI
    Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))}
    { for(n=0, 8, print(Row(n))) }

A003515 Number of series-reduced connected labeled graphs with n nodes.

Original entry on oeis.org

0, 1, 1, 0, 5, 51, 3634, 374119, 73161880, 26545249985, 17904840957826, 22602069719494379, 53938857227326533032, 246107945479472758874483, 2170331943503938546383205218, 37340982087637629911717846092591, 1262915556964772342158139988356979872
Offset: 0

Views

Author

Keywords

Comments

Jackson and Reilly paper has typographical error in value for a(12). - Sean A. Irvine, Jun 17 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A331438.
Column sums of A331437.

Programs

  • PARI
    \\ See Jackson & Reilly for e.g.f.
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log((exp(x/2 - x^2/4 + A)/sqrt(1 + x + A))*sum(k=0, n, (2*exp(-x/(1+x) + A))^binomial(k,2) * (x*exp((x^2 + A)/(2*(1 + x))))^k / k!))), -(n+1))} \\ Andrew Howroyd, Jan 24 2020

Formula

E.g.f.: log(B(x)) where B(x) is the e.g.f. for A003514. - Sean A. Irvine, Jun 17 2015

Extensions

More terms and a(12) corrected by Sean A. Irvine, Jun 17 2015

A331438 Irregular triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n vertices and k edges, n >= 1, 0 <= k <= n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 5, 0, 0, 20, 15, 10, 1, 0, 0, 0, 0, 0, 96, 120, 180, 420, 700, 837, 765, 395, 105, 15, 1, 0, 0, 0, 0, 0, 0, 427, 1260, 3780, 10850, 24045, 44814, 68040, 80955, 70500, 43232, 18774, 5880, 1330, 210, 21, 1, 0, 0, 0, 0, 0, 0, 0, 6448, 23520, 79800, 269360, 782880, 1956136, 4203360, 7610340, 11365676
Offset: 1

Views

Author

N. J. A. Sloane, Jan 19 2020

Keywords

Examples

			Triangle begins:
1,
0,1,
0,0,0,0,
0,0,0,4,0,0,1,
0,0,0,0,5,0,0,20,15,10,1,
0,0,0,0,0,96,120,180,420,700,837,765,395,105,15,1,
0,0,0,0,0,0,427,1260,3780,10850,24045,44814,68040,80955,70500,43232,18774,5880,1330,210,21,1,
0,0,0,0,0,0,0,6448,23520,79800,269360,782880,1956136,4203360,7610340,11365676,...,
...
		

Crossrefs

Row sums are A003515.
Cf. A060514, A331437 (transpose).

Programs

  • PARI
    \\ See Jackson & Reilly for e.g.f.
    H(n,y)={my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
    Row(n)={Vecrev(n!*polcoef(log(H(n,y)), n), binomial(n,2)+1)}
    { for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Jan 24 2020

A060514 Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 0, 0, 1, 6, 3, 4, 0, 0, 1, 1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1, 1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1, 1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330
Offset: 0

Views

Author

Vladeta Jovovic, Mar 23 2001

Keywords

Examples

			Triangle begins:
[1],
[1],
[1, 1],
[1, 3, 0, 0],
[1, 6, 3, 4, 0, 0, 1],
[1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1],
[1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1],
[1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330, 210, 21, 1],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums: A003514.
For connected graphs see A331437, A331438.

Formula

E.g.f. : (1+x*y)^(-1/2)*exp(x*y/2-x^2*y^2/4)*Sum_{k=0..inf}((1+x)*exp(-x^2*y/(1+x*y)))^binomial(k, 2)*(exp(1/2*x^3*y^2/(1+x*y)))^k*x^k/k!

A331584 Number of series-reduced connected labeled graphs with n edges.

Original entry on oeis.org

1, 1, 0, 4, 5, 96, 548, 7908, 84696, 1331840, 20255774, 372819387, 7170089146, 154824436840, 3558826861734, 88938133663711, 2367074592366594, 67402755251544804, 2034875403034891874, 65102692993820702700, 2196725886835707259041, 78036983096041464230268
Offset: 0

Views

Author

Andrew Howroyd, Jan 24 2020

Keywords

Comments

Series-reduced graphs are also called homeomorphically irreducible graphs and are the graphs without vertices of degree 2.

Crossrefs

Row sums of A331437.
Column sums of A331438.
Cf. A003515.

Programs

  • PARI
    \\ See Jackson & Reilly link for e.g.f.
    H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
    seq(n)={Vec(subst(Pol(serlaplace(log(H(n, y+O(y^n))))), x, 1))}
Showing 1-5 of 5 results.