A003514
Number of series-reduced labeled graphs with n nodes.
Original entry on oeis.org
1, 1, 2, 4, 15, 102, 4166, 402631, 76374899, 27231987762, 18177070202320, 22801993267433275, 54212469444212172845, 246812697326518127351384, 2173787304796735262709419350, 37373588848096468764431235680525, 1263513534110606141026676778422031561
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
max = 15; f[x_] := (1 + x)^(-1/2)*Exp[x/2-x^2/4]*Sum[(2*Exp[-x/(1+x)])^Binomial[k, 2]*Exp[x^2/2/(1+x)]^k*x^k/k!, {k, 0, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Nov 25 2011, after Vladeta Jovovic *)
-
seq(n)={my(x='x+O('x^(n+1))); Vec(serlaplace((1 + x)^( - 1/2) * exp(x/2 - x^2/4) * sum(k=0, n, (2 * exp(-x/(1 + x)))^binomial(k, 2) * (exp(x^2/2/(1 + x)))^k * x^k/k!)))} \\ Andrew Howroyd, Feb 23 2024
A331437
Triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n edges and k vertices, n >= 0, 1 <= k <= n+1.
Original entry on oeis.org
1, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 96, 0, 0, 0, 1, 0, 120, 427, 0, 0, 0, 0, 20, 180, 1260, 6448, 0, 0, 0, 0, 15, 420, 3780, 23520, 56961, 0, 0, 0, 0, 10, 700, 10850, 79800, 347760, 892720, 0, 0, 0, 0, 1, 837, 24045, 269360, 1655640, 6400800, 11905091
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 0;
0, 0, 0, 4;
0, 0, 0, 0, 5;
0, 0, 0, 0, 0, 96;
0, 0, 0, 1, 0, 120, 427;
0, 0, 0, 0, 20, 180, 1260, 6448;
0, 0, 0, 0, 15, 420, 3780, 23520, 56961;
...
-
\\ See Jackson & Reilly for e.g.f.
H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
T(n) = {Mat([Col(p, -n) | p<-Vec(serlaplace(log(H(n,y + O(y^n)))))])}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 24 2020
A331438
Irregular triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n vertices and k edges, n >= 1, 0 <= k <= n*(n-1)/2.
Original entry on oeis.org
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 5, 0, 0, 20, 15, 10, 1, 0, 0, 0, 0, 0, 96, 120, 180, 420, 700, 837, 765, 395, 105, 15, 1, 0, 0, 0, 0, 0, 0, 427, 1260, 3780, 10850, 24045, 44814, 68040, 80955, 70500, 43232, 18774, 5880, 1330, 210, 21, 1, 0, 0, 0, 0, 0, 0, 0, 6448, 23520, 79800, 269360, 782880, 1956136, 4203360, 7610340, 11365676
Offset: 1
Triangle begins:
1,
0,1,
0,0,0,0,
0,0,0,4,0,0,1,
0,0,0,0,5,0,0,20,15,10,1,
0,0,0,0,0,96,120,180,420,700,837,765,395,105,15,1,
0,0,0,0,0,0,427,1260,3780,10850,24045,44814,68040,80955,70500,43232,18774,5880,1330,210,21,1,
0,0,0,0,0,0,0,6448,23520,79800,269360,782880,1956136,4203360,7610340,11365676,...,
...
-
\\ See Jackson & Reilly for e.g.f.
H(n,y)={my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
Row(n)={Vecrev(n!*polcoef(log(H(n,y)), n), binomial(n,2)+1)}
{ for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Jan 24 2020
A331584
Number of series-reduced connected labeled graphs with n edges.
Original entry on oeis.org
1, 1, 0, 4, 5, 96, 548, 7908, 84696, 1331840, 20255774, 372819387, 7170089146, 154824436840, 3558826861734, 88938133663711, 2367074592366594, 67402755251544804, 2034875403034891874, 65102692993820702700, 2196725886835707259041, 78036983096041464230268
Offset: 0
-
\\ See Jackson & Reilly link for e.g.f.
H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
seq(n)={Vec(subst(Pol(serlaplace(log(H(n, y+O(y^n))))), x, 1))}
A307806
Triangle T(n,k) read by rows: number of series-reduced labeled graphs on n nodes with k components.
Original entry on oeis.org
1, 1, 1, 0, 3, 1, 5, 3, 6, 1, 51, 25, 15, 10, 1, 3634, 381, 90, 45, 15, 1, 374119, 26509, 1596, 280, 105, 21, 1, 73161880, 3095579, 111370, 5061, 770, 210, 28, 1, 26545249985, 671957334, 14411205, 353262, 13671, 1890, 378, 36, 1
Offset: 1
The triangle starts
1;
1,1;
0,3,1;
5,3,6,1;
51,25,15,10,1;
3634,381,90,45,15,1;
374119,26509,1596,280,105,21,1;
73161880,3095579,111370,5061,770,210,28,1;
26545249985,671957334,14411205,353262,13671,1890,378,36,1;
Showing 1-5 of 5 results.
Comments