cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003515 Number of series-reduced connected labeled graphs with n nodes.

Original entry on oeis.org

0, 1, 1, 0, 5, 51, 3634, 374119, 73161880, 26545249985, 17904840957826, 22602069719494379, 53938857227326533032, 246107945479472758874483, 2170331943503938546383205218, 37340982087637629911717846092591, 1262915556964772342158139988356979872
Offset: 0

Views

Author

Keywords

Comments

Jackson and Reilly paper has typographical error in value for a(12). - Sean A. Irvine, Jun 17 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A331438.
Column sums of A331437.

Programs

  • PARI
    \\ See Jackson & Reilly for e.g.f.
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log((exp(x/2 - x^2/4 + A)/sqrt(1 + x + A))*sum(k=0, n, (2*exp(-x/(1+x) + A))^binomial(k,2) * (x*exp((x^2 + A)/(2*(1 + x))))^k / k!))), -(n+1))} \\ Andrew Howroyd, Jan 24 2020

Formula

E.g.f.: log(B(x)) where B(x) is the e.g.f. for A003514. - Sean A. Irvine, Jun 17 2015

Extensions

More terms and a(12) corrected by Sean A. Irvine, Jun 17 2015

A331437 Triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n edges and k vertices, n >= 0, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 96, 0, 0, 0, 1, 0, 120, 427, 0, 0, 0, 0, 20, 180, 1260, 6448, 0, 0, 0, 0, 15, 420, 3780, 23520, 56961, 0, 0, 0, 0, 10, 700, 10850, 79800, 347760, 892720, 0, 0, 0, 0, 1, 837, 24045, 269360, 1655640, 6400800, 11905091
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2020

Keywords

Comments

Homeomorphically irreducible graphs are graphs without vertices of degree 2. - Andrew Howroyd, Jan 24 2020

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 0;
  0, 0, 0, 4;
  0, 0, 0, 0,  5;
  0, 0, 0, 0,  0,  96;
  0, 0, 0, 1,  0, 120,  427;
  0, 0, 0, 0, 20, 180, 1260,  6448;
  0, 0, 0, 0, 15, 420, 3780, 23520, 56961;
...
		

Crossrefs

Column sums are A003515.
Row sums are A331584.
Right diagonal is A005512(n+1).
Cf. A060514, A331438 (transpose).

Programs

  • PARI
    \\ See Jackson & Reilly for e.g.f.
    H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
    T(n) = {Mat([Col(p, -n) | p<-Vec(serlaplace(log(H(n,y + O(y^n)))))])}
    { my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 24 2020

Extensions

Terms a(44) and beyond from Andrew Howroyd, Jan 24 2020

A060514 Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 0, 0, 1, 6, 3, 4, 0, 0, 1, 1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1, 1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1, 1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330
Offset: 0

Views

Author

Vladeta Jovovic, Mar 23 2001

Keywords

Examples

			Triangle begins:
[1],
[1],
[1, 1],
[1, 3, 0, 0],
[1, 6, 3, 4, 0, 0, 1],
[1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1],
[1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1],
[1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330, 210, 21, 1],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums: A003514.
For connected graphs see A331437, A331438.

Formula

E.g.f. : (1+x*y)^(-1/2)*exp(x*y/2-x^2*y^2/4)*Sum_{k=0..inf}((1+x)*exp(-x^2*y/(1+x*y)))^binomial(k, 2)*(exp(1/2*x^3*y^2/(1+x*y)))^k*x^k/k!

A331584 Number of series-reduced connected labeled graphs with n edges.

Original entry on oeis.org

1, 1, 0, 4, 5, 96, 548, 7908, 84696, 1331840, 20255774, 372819387, 7170089146, 154824436840, 3558826861734, 88938133663711, 2367074592366594, 67402755251544804, 2034875403034891874, 65102692993820702700, 2196725886835707259041, 78036983096041464230268
Offset: 0

Views

Author

Andrew Howroyd, Jan 24 2020

Keywords

Comments

Series-reduced graphs are also called homeomorphically irreducible graphs and are the graphs without vertices of degree 2.

Crossrefs

Row sums of A331437.
Column sums of A331438.
Cf. A003515.

Programs

  • PARI
    \\ See Jackson & Reilly link for e.g.f.
    H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)}
    seq(n)={Vec(subst(Pol(serlaplace(log(H(n, y+O(y^n))))), x, 1))}
Showing 1-4 of 4 results.