cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331459 Integers m such that phi(m) * tau(m)^2 divides m^2.

Original entry on oeis.org

1, 2, 8, 12, 80, 96, 128, 720, 972, 1152, 1200, 1344, 2560, 4032, 6144, 6912, 7680, 7776, 8100, 10000, 23040, 26244, 30000, 30720, 32768, 34560, 38400, 55296, 56320, 62208, 64000, 64800, 80000, 84672, 90000, 97200, 98304, 103680, 108864, 110000, 142884, 159744
Offset: 1

Views

Author

Bernard Schott, Jan 17 2020

Keywords

Comments

For every m positive m <> 4, m^2 >= phi(m) * tau(m)^2 with equality iff m = 1, 2, 8, 12 that are the first four terms of this sequence (see De Koninck & Mercier in References).
As phi(m) is even for m >= 2, the terms > 1 of this sequence are necessarily even.
The first few quotients obtained are 1, 1, 1, 1, 2, 2, 4, 3, 9, 6, ...
The numbers of the form m = 3 * 2^(2^k-1), k >= 4 are terms. - Marius A. Burtea, Jan 17 2020
... with m^2 / (phi(m) * tau(m)^2) = 9 * 2^(2^k-2*k-3). - Bernard Schott, Jan 17 2020

Examples

			96 is a term because tau(96) = 12, phi(96) = 32 and 96^2 / (32*12^2) = 2.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 632 pp. 83, 283, Ellipses, Paris, 2004.

Crossrefs

Cf. A000005 (tau), A000010 (phi), A022157.

Programs

  • Magma
    [1] cat [m:m in [2..160000 by 2]| m^2 mod (EulerPhi(m)*DivisorSigma(0,m)^2) eq 0]; // Marius A. Burtea, Jan 17 2020
  • Maple
    with(numtheory): filter:= m-> irem(m^2, phi(m)*tau(m)^2)=0:
    select(filter, [$1..160000])[]; \\ Alois P. Heinz, Jan 17 2020
  • Mathematica
    Select[Range[160000], Divisible[#^2, EulerPhi[#] * DivisorSigma[0, #]^2] &] (* Amiram Eldar, Jan 17 2020 *)
  • PARI
    isok(m) = Mod(m, eulerphi(m)*numdiv(m)^2)^2 == 0; \\ Michel Marcus, Jan 17 2020