cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302112 Number of forests with 2n nodes and n labeled trees. Also number of forests with exactly n edges on 2n labeled nodes.

Original entry on oeis.org

1, 1, 15, 435, 18865, 1092105, 79170399, 6899167275, 702495121185, 81857181636945, 10742799174110575, 1568060617808784099, 251983549987815976785, 44207398164005846558425, 8407483858740005340602175, 1722961754698440157865926875, 378507890849998531093971032385
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2018

Keywords

Comments

From Washington Bomfim, Mar 20 2020: (Start)
Considering the uniform model of graph evolution [see the Flajolet link] with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n is P(n) = a(n) * n! * 2^n / (2n)^(2n). Concerning the permutation model [see same link] the corresponding probability is Pp(n) = a(n) / A331505(2n).
By Kotesovec's approximation of a(n), P(n) ~ c1/n^(1/6), and Pp(n) ~ e^(3/4)* P(n), c1 = 0.577983047665... = (2/3)^(1/3) * sqrt(Pi) / Gamma(1/3).
In both models the presence of cycles in graphs evolving near the critical time should be estimated by the above approximations. (End)

Crossrefs

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(2*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    Flatten[{1, Table[Sum[(-1)^k * Binomial[n, k] * Binomial[2*n - 1, n - k] * 2^(n - 2*k) * n^(n - k) * (n + k)!, {k, 0, n} ] / n!, {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 19 2019 *)
    Table[(-1)^n * HypergeometricPFQ[{1 - 2*n, -n}, {1, -2*n}, 4*n] * (2*n)! / (n!*2^n), {n, 0, 20}] (* Vaclav Kotesovec, Jul 19 2019 *)
    Table[(-1)^n * 2^n * Gamma[n + 1/2] * (2*n*Hypergeometric1F1[1 - n, 2, 4*n] + LaguerreL[n, 4*n]) / Sqrt[Pi], {n, 0, 20}] (* Vaclav Kotesovec, Feb 19 2020 *)

Formula

a(n) = A105599(2*n,n) = A138464(2*n,n).
a(n) ~ c * 2^n * exp(n) * n^(n - 2/3), where c = 0.2305818... = 1 / (2^(1/6) * 3^(1/3) * Gamma(1/3)) [symbolic expression for c is conjectural]. - Vaclav Kotesovec, Jul 20 2019, updated Feb 20 2020
a(n) = (1/n!) * Sum_{j=0..n} (-1/2)^j * binomial(n,j) * binomial(2*n-1,n+j-1) * (2*n)^(n-j) * (n+j)!. - Jon E. Schoenfield, Jan 13 2020
a(n) = (-1)^n * (2*n)! * (Laguerre(n, 4*n) + 2*n*hypergeometric1F1(1 - n, 2, 4*n)) / (n! * 2^n). - Vaclav Kotesovec, Feb 19 2020
a(n) = (A332679(n) - 2*n*A332680(n)) * binomial(2*n, n) / 2^n. - Vaclav Kotesovec, Feb 20 2020
a(n) = (2*n)! * Sum_{P(2*n,n)} Product_{p=1..2*n} f(p)^c_p / (c_p! * p!^c_p), where f(n) = A000272(n) = n^(n-2) and P(2*n,n) are the partitions of 2*n with n parts, 1*c_1 + 2*c_2 + ... + (2*n)*c_n; c_1, c_2, ..., c_(2*n) >= 0.
- Washington Bomfim, Apr 05 2020

A331500 a(n) = A302112(n) * n! * 2^n.

Original entry on oeis.org

1, 2, 120, 20880, 7244160, 4193683200, 3648171985920, 4450790792448000, 7251098441261875200, 15208619045076276019200, 39919072914444753469440000, 128188338317208930555828633600, 494389344738688341547326898176000, 2255096937522349816552823932846080000
Offset: 0

Views

Author

Washington Bomfim, Feb 02 2020

Keywords

Comments

Considering the uniform model of graph evolution [Flajolet] with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at time n is P(n) = a(n)/(2n)^(2n). See the following.
Since endpoints of edges are in 1..2n, if at time n we write side by side the 2n endpoints of the included n edges, we can have any one of the (2n)^(2n) strings of length 2n in 2n characters [A085534]. A single forest G(V,E) corresponds to n! * 2^n sequences because the n edges of E(G) are exchanged for n! ways, and each permutation corresponds to 2^n sequences since each edge u-v can be in a sequence as u-v or v-u. So the number of distinct sequences of length 2n on 2n symbols formed by A302112(n) forests is a(n) = A302112(n) * n! * 2^n.
If t < n, P(n) is a lower bound of P(t). If t > n, P(n) is an upper bound of P(t), P(t) the probability of an acyclic graph in time t.
The expected value of the number of trials until the appearance of a forest at time n is ev(n) = 1/P(n) = (2*n)^(2*n) / a(n). Below is a table of n and corresponding values of ev(n) for selected values of n.
----------------------------------------------
n | 1 | 10 | 100 | 1000 | 10^4 | 10^5 | 10^6 |
|---+-----+------+------+------+-------+-------|
ev(n) | 2 |2.63 | 3.76 | 5.48 | 8.03 | 11.79 | 17.30 |
----------------------------------------------
(Expected values for n >= 10^4 determined using Vaclav Kotesovec's approximation of A302112.)
To obtain a bijection h: S -> {1,2,...,n}, where S is a given set of n elements (keys) it is only necessary to determine an acyclic graph from the elements of S. Because the expected number of generated graphs is small when the number of nodes N = 2n we can use space proportional to 2n to store a graph. If n = 10^5, for example, from table above we expect to generate 11.79 graphs. For details about determination of bijections see [Havas].

Examples

			If n = 1 a(n) = 2, a(n)/(2*n)^(2*n) = 1/2. If we toss two coins we obtain one of the four ordered pairs: (H,H), (H,T), (T,H), or (T,T). The probability of a forest is 1/2, and the expected value of trials until a forest is 2.
		

Crossrefs

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
          `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
           T(n-j, m-1), j=1..n-m+1))))
        end:
    a:= n-> T(2*n, n)*n!*2^n:
    seq(a(n), n=0..14);  # Alois P. Heinz, Jun 24 2021
  • Mathematica
    Array[(-1)^#*HypergeometricPFQ[{1 - 2 #, -#}, {1, -2 #}, 4 #]*(2 #)! &, 7] (* Michael De Vlieger, Feb 07 2020, after Vaclav Kotesovec at A302112 *)
  • PARI
    A302112(n) = { \\ From Jon E. Schoenfield's formula in A302112.
    sum(j = 0, n, (-1/2)^j * binomial(n, j) * binomial(2*n-1, n+j-1) * (2*n)^(n-j) * (n+j)!) / n! };
    a(n) = A302112(n) * n! * 2^n;

Formula

a(n) = A302112(n) * n! * 2^n = A000165(n) * A302112(n).

Extensions

Edited by Washington Bomfim, Jun 14 2021

A331501 Decimal expansion of exp(3/4).

Original entry on oeis.org

2, 1, 1, 7, 0, 0, 0, 0, 1, 6, 6, 1, 2, 6, 7, 4, 6, 6, 8, 5, 4, 5, 3, 6, 9, 8, 1, 9, 8, 3, 7, 0, 9, 5, 6, 1, 0, 1, 3, 4, 4, 9, 1, 5, 8, 4, 7, 0, 2, 4, 0, 3, 4, 2, 1, 7, 7, 9, 1, 3, 3, 0, 3, 0, 8, 1, 0, 9, 8, 4, 5, 3, 3, 3, 6, 4, 0, 1, 2, 8, 2, 0, 0, 0, 2, 7, 9, 1, 5, 6, 0, 2, 6, 6, 6, 1, 5, 7, 9, 8, 2, 1, 8, 8, 8
Offset: 1

Views

Author

Washington Bomfim, Feb 27 2020

Keywords

Comments

Considering graph evolutions (see the Flajolet link) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n in the uniform model, will be denoted by P(n). In the case of the permutation model, the respective probability will be denoted by Pp(n).
Pp(n) / P(n) ~ exp(3/4) since Pp(n) = A302112(n) / A331505(2n) = A302112(n) / C(C(2n,2), n), and P(n) = A302112(n) * n! * 2^n / (2n)^(2n), Pp(n) / P(n) = (2n)^(2n) / (C(C(2n,2), n) * n! * 2^n), and lim_{n->oo} Pp(n) / P(n) = exp(3/4).

Examples

			2.1170000166126746685453698198370956101344915847024...
		

Crossrefs

Programs

Formula

Equals lim_{n->oo} Pp(n) / P(n) = lim_{n->oo} (2*n)^(2*n) / (binomial(binomial(2n,2), n) * n! * 2^n).
Equals lim_{n->oo} sqrt(n)/A000178(n)^(1/(n*(n+1))) (Giugiuc and Marinescu, 2017). - Amiram Eldar, Apr 12 2022

A331502 Decimal expansion of exp(4/9).

Original entry on oeis.org

1, 5, 5, 9, 6, 2, 3, 4, 9, 7, 6, 0, 6, 7, 8, 0, 7, 1, 5, 5, 3, 3, 7, 0, 9, 2, 8, 6, 9, 7, 9, 4, 7, 1, 1, 8, 6, 3, 9, 4, 8, 2, 4, 0, 1, 1, 4, 2, 2, 1, 4, 2, 3, 5, 4, 3, 9, 0, 2, 7, 8, 4, 3, 1, 5, 4, 3, 5, 6, 3, 8, 5, 0, 1, 3, 3, 1, 0, 6, 3, 2, 6, 4, 2, 7, 5, 8, 1, 6, 1, 2, 4, 9, 2, 9, 9, 4, 0, 1, 5, 4, 2, 9, 1, 6, 9
Offset: 1

Views

Author

Washington Bomfim, Mar 04 2020

Keywords

Comments

Considering graph evolutions (see the Flajolet link) with 3n vertices initially isolated, the probability of the occurrence of an acyclic graph at the point n, (n = 1/3 * 3n), in the uniform model, will be denoted by P13(n). In the case of the permutation model, the respective probability will be denoted by Pp13(n).
Pp13(n) / P13(n) ~ exp(4/9) since Pp13(n) = f(n) / C(N,n), where f(n) is the number of labeled forests with 3n nodes and n edges, and C(N,n), N = 3n *(3n-1)/2 (see the Lucatero link) is the number of labeled graphs with 3n nodes and n edges.
Because P13(n) = f(n)* n!* 2^n / (3n)^(2n), Pp13(n) / P13(n) = (3n)^(2n) / (C(N,n)* n! *2^n), and Lim_{n->oo} Pp13(n) / P13(n) = exp(4/9).

Examples

			1.55962349760678071553370928697947118639482401142214...
		

Crossrefs

Programs

  • Maple
    evalf(exp(4/9), 134);
  • Mathematica
    RealDigits[Exp[4/9],10,120][[1]] (* Harvey P. Dale, Jun 05 2023 *)
  • PARI
    exp(4/9)

Formula

Equals Lim_{n->oo} Pp13(n) / P13(n) = Lim_{n->oo} (3*n)^(2*n) / (binomial((3*n *(3*n-1)/2), n) * n! * 2^n).

A331563 Number of labeled cyclic graphs with n edges and 2n vertices.

Original entry on oeis.org

0, 0, 20, 1610, 129654, 11688369, 1194822915, 137766789810, 17758192128830, 2535895233070628, 397875362655895761, 68087081506276861665, 12626853606957534296975, 2523446241515288646389325
Offset: 1

Views

Author

Washington Bomfim, Jan 20 2020

Keywords

Examples

			a(4) = 1610 since we have 3 non-isomorphic cyclic graphs with 4 edges and 8 nodes. (See illustration below.)
To compute a(4) we can consult A057500, which provides the number of labeled connected unicycles. Because A057500(4)=15, and knowing that there are 3 labeled squares, we have 15-3 = 12 Paw Graphs [see Weisstein link]. So graph 1 is labeled in 12 * C(8,4) = 840 ways. Graph 2 is labeled in 3* C(8,4) = 210 ways. A105599 gives 10 as the number of labeled forests with 5 nodes and 4 components, so graph 3 is labeled in 10 * C(8,3) = 560 ways. We have 840 + 210 + 560 = 1610.
.
  graph 1    graph 2    graph 3 (triangle + forest with
                                 5 nodes and 4 components)
   *--*       *--*       *--* *
   | /|       |  |       | /  |
   |/ |       |  |       |/   |
   *  *       *--*       *    *
  * * * *    * * * *      * * *
		

Crossrefs

Formula

a(n) = A331505(2n) - A302112(n).
Showing 1-5 of 5 results.