A331609 Number of compositions of n with the multiplicity of the first part even.
0, 1, 0, 4, 4, 14, 20, 56, 98, 224, 420, 902, 1764, 3664, 7258, 14824, 29596, 59942, 120012, 241944, 484946, 975216, 1955244, 3926078, 7870980, 15790272, 31650090, 63456208, 127162580, 254845446, 510582236, 1022940392, 2049048890, 4104264424, 8219808108
Offset: 1
Keywords
Examples
For n=4, a(4)=4 and counts 2+2, 1+2+1, 1+1+2 and 1+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Programs
-
Maple
b:= proc(n, p, t) option remember; `if`(n=0, t, add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n)) end: a:= n-> add(b(n-j, j, 0), j=1..n): seq(a(n), n=1..38); # Alois P. Heinz, Jan 23 2020
-
Mathematica
gf[x_] := (1 - x)/(1 - 2 x) - Sum[ ((x - 1) x^i (-x^(i + 1) + x^i - 2 x + 1)) / ((2 x - 1) (-2 x^(i + 1) + 2 x^i - 2 x + 1)), {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x]; Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *)
Formula
G.f.: (1-x)/(1-2*x) - Sum_{i>=1} ((x-1)*x^i*(-x^(i+1)+x^i-2*x+1)) / ((2*x-1) * (-2*x^(i+1)+2*x^i-2*x+1)).