cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331609 Number of compositions of n with the multiplicity of the first part even.

Original entry on oeis.org

0, 1, 0, 4, 4, 14, 20, 56, 98, 224, 420, 902, 1764, 3664, 7258, 14824, 29596, 59942, 120012, 241944, 484946, 975216, 1955244, 3926078, 7870980, 15790272, 31650090, 63456208, 127162580, 254845446, 510582236, 1022940392, 2049048890, 4104264424, 8219808108
Offset: 1

Views

Author

Arnold Knopfmacher, Jan 22 2020

Keywords

Examples

			For n=4, a(4)=4 and counts 2+2, 1+2+1, 1+1+2 and 1+1+1+1.
		

Crossrefs

Cf. A011782, A331606 (similar, with odd).

Programs

  • Maple
    b:= proc(n, p, t) option remember; `if`(n=0, t,
          add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n))
        end:
    a:= n-> add(b(n-j, j, 0), j=1..n):
    seq(a(n), n=1..38);  # Alois P. Heinz, Jan 23 2020
  • Mathematica
    gf[x_] := (1 - x)/(1 - 2 x) - Sum[ ((x - 1) x^i (-x^(i + 1) + x^i - 2 x + 1)) / ((2 x - 1) (-2 x^(i + 1) + 2 x^i - 2 x + 1)), {i, 1, 40}];
    CL := CoefficientList[Series[gf[x], {x, 0, 35}], x]; Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *)

Formula

G.f.: (1-x)/(1-2*x) - Sum_{i>=1} ((x-1)*x^i*(-x^(i+1)+x^i-2*x+1)) / ((2*x-1) * (-2*x^(i+1)+2*x^i-2*x+1)).
a(n) = A011782(n) - A331606(n). - Alois P. Heinz, Jan 23 2020