A331630 Numbers M such that 23 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
77, 76923077, 76923076923077, 76923076923076923077, 76923076923076923076923077, 76923076923076923076923076923077, 76923076923076923076923076923076923077, 76923076923076923076923076923076923076923077
Offset: 1
Examples
23 * 77 = 1771, hence 77 is a term. 23 * 76923076923077 = 1(76923076923077)1, and 76923076923077 is another term.
References
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
Links
- Colin Barker, Table of n, a(n) for n = 1..150
- Index entries for linear recurrences with constant coefficients, signature (1000001,-1000000).
Programs
-
Maple
seq((10^(6*m-3)+1)/13, m=1..15);
-
Mathematica
Array[(10^(6 # - 3) + 1)/13 &, 9] (* Michael De Vlieger, Jan 24 2020 *) LinearRecurrence[{1000001,-1000000},{77,76923077},10] (* Harvey P. Dale, Mar 03 2023 *)
-
PARI
vector(9, n, (10^(6*n-3)+1)/13) \\ Michel Marcus, Jan 25 2020
-
PARI
Vec(77*x*(1 - 1000*x) / ((1 - x)*(1 - 1000000*x)) + O(x^10)) \\ Colin Barker, Jan 25 2020
-
PARI
apply( {A331630(n)=10^(6*n-3)\/13}, [1..9]) \\ M. F. Hasler, Jan 26 2020, following Michel Marcus
Formula
a(n) = (10^(6*n-3)+1)/13 for n >= 1.
From Colin Barker, Jan 25 2020: (Start)
G.f.: 77*x*(1 - 1000*x) / ((1 - x)*(1 - 1000000*x)).
a(n) = 1000001*a(n-1) - 1000000*a(n-2) for n>2.
a(n) = (1000 + 1000^(2*n))/13000 for n>0.
(End)
E.g.f.: exp(x)*(1000 + exp(999999*x))/13000 - 77/1000. - Stefano Spezia, Jan 26 2020
Comments