A331755
Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.
Original entry on oeis.org
2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- Scott R. Shannon, Images of vertices for n=2.
- Scott R. Shannon, Images of vertices for n=3.
- Scott R. Shannon, Images of vertices for n=4.
- Scott R. Shannon, Images of vertices for n=5.
- Scott R. Shannon, Images of vertices for n=6
- Scott R. Shannon, Images of vertices for n=7
- Scott R. Shannon, Images of vertices for n=8
- Scott R. Shannon, Images of vertices for n=9
- Scott R. Shannon, Images of vertices for n=10.
- Scott R. Shannon, Images of vertices for n=12.
- Scott R. Shannon, Images of vertices for n=15.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Index entries for sequences related to stained glass windows
-
# Maple code from N. J. A. Sloane, Jul 16 2020
V106i := proc(n) local ans,a,b; ans:=0;
for a from 1 to n-1 do for b from 1 to n-1 do
if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004
V106ii := proc(n) local ans,a,b; ans:=0;
for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do
if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761
A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
-
a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)
A334701
Consider the figure made up of a row of n adjacent congruent rectangles, with diagonals of all possible rectangles drawn; a(n) = number of interior vertices where exactly two lines cross.
Original entry on oeis.org
1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, 1912, 2622, 3624, 4690, 6096, 7686, 9764, 12010, 14866, 18026, 21904, 25918, 30818, 36246, 42654, 49246, 57006, 65334, 75098, 85414, 97384, 110138, 124726, 139642, 156286, 174018, 194106, 214570, 237534, 261666, 288686, 316770, 348048, 380798, 416524, 452794, 492830
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..500
- Lars Blomberg, Array (s,n) of the number of internal vertices where exactly s=2..501 lines cross in a figure made up of a row of n=1..500 adjacent congruent rectangles, with diagonals of all possible rectangles drawn. Rows are stored comma-separated.
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration showing regions for n=1
- Scott R. Shannon, Images of vertices for n=1.
- Scott R. Shannon, Colored illustration showing regions for n=2
- Scott R. Shannon, Images of vertices for n=2.
- Scott R. Shannon, Colored illustration showing regions for n=3
- Scott R. Shannon, Images of vertices for n=3.
- Scott R. Shannon, Colored illustration showing regions for n=4
- Scott R. Shannon, Images of vertices for n=4.
- Scott R. Shannon, Colored illustration showing regions for n=5
- Scott R. Shannon, Images of vertices for n=5
- Scott R. Shannon, Colored illustration showing regions for n=6
- Scott R. Shannon, Images of vertices for n=6
- Scott R. Shannon, Images of vertices for n=7
- Scott R. Shannon, Images of vertices for n=8
- Scott R. Shannon, Images of vertices for n=9.
- Scott R. Shannon, Images of vertices for n=11.
- Scott R. Shannon, Images of vertices for n=14.
- Index entries for sequences related to stained glass windows
A331762
Triangle read by rows: T(n,k) (1 <= k <= n) = Sum_{i=1..n, j=1..k, gcd(i,j)=2} (n+1-i)*(k+1-j).
Original entry on oeis.org
0, 0, 1, 0, 2, 4, 0, 4, 8, 15, 0, 6, 12, 22, 32, 0, 9, 18, 33, 48, 71, 0, 12, 24, 44, 64, 94, 124, 0, 16, 32, 58, 84, 123, 162, 211, 0, 20, 40, 72, 104, 152, 200, 260, 320, 0, 25, 50, 90, 130, 190, 250, 325, 400, 499
Offset: 1
Triangle begins:
0;
0, 1;
0, 2, 4;
0, 4, 8, 15;
0, 6, 12, 22, 32;
0, 9, 18, 33, 48, 71;
0, 12, 24, 44, 64, 94, 124;
0, 16, 32, 58, 84, 123, 162, 211;
0, 20, 40, 72, 104, 152, 200, 260, 320;
0, 25, 50, 90, 130, 190, 250, 325, 400, 499;
0, 30, 60, 108, 156, 228, 300, 390, 480, 598, 716;
...
-
V := proc(m,n,q) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
for m from 1 to 12 do
lprint([seq(V(m,n,2),n=1..m)]); od:
-
Table[Sum[Boole[GCD[i, j] == 2] (n + 1 - i) (k + 1 - j), {i, n}, {j, k}], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 04 2020 *)
A332596
Number of quadrilateral regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 8.
Original entry on oeis.org
0, 1, 10, 26, 63, 107, 189, 294, 455, 627, 891, 1202, 1650, 2121, 2719, 3392, 4292, 5239, 6470, 7832, 9463, 11129, 13205, 15460, 18164, 20919, 24130, 27572, 31679, 35945, 40977, 46340, 52384, 58511, 65421, 72718, 81104, 89589, 98989, 108860, 120062, 131551
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 0 else 8*n^2 - 36*n + 24 + 4*V(n,n,1) 8*V(n, n, 2); fi;
[seq(f(n)/8, n=1..60)]; # N. J. A. Sloane, Mar 10 2020
-
a(n) = sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0)))/2 - sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + n^2 - 9*n/2 + 3; \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A332596(n): return 0 if n == 1 else ((n-1)*(n-4) - sum(totient(i)*(n+1-i)*(2*n+2-7*i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)))//2 # Chai Wah Wu, Aug 16 2021
A332595
Number of triangular regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 4.
Original entry on oeis.org
1, 12, 32, 72, 128, 232, 368, 576, 832, 1232, 1712, 2328, 3040, 4040, 5184, 6616, 8224, 10248, 12496, 15144, 18048, 21688, 25664, 30184, 35072, 41000, 47392, 54608, 62336, 71088, 80416, 90864, 101952, 114832, 128480, 143352, 159040, 176984, 195888, 216424, 237984, 261624, 286384, 313184, 341184, 372496, 405184
Offset: 1
-
V := proc(m,n,q) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 4 else 8*n^2 + 16*n - 24 + 8*V(n,n,2); fi;
[seq(f(n)/4, n=1..60)]; # N. J. A. Sloane, Mar 09 2020
A332597
Number of edges in a "frame" of size n X n (see Comments in A331776 for definition).
Original entry on oeis.org
8, 92, 360, 860, 1792, 3124, 5256, 8188, 12304, 17460, 24568, 33244, 44688, 58228, 74664, 94028, 118080, 145380, 178568, 216252, 259776, 308276, 365352, 428556, 501152, 580804, 670536, 768908, 880992, 1001764, 1138248, 1286748, 1449984, 1625300, 1817752, 2023740, 2252048, 2495476, 2759304, 3040460, 3349056
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 8 else 28*n^2 - 44*n + 8 + 8*V(n,n,1) - 4*V(n, n, 2); fi;
[seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
from sympy import totient
def A332597(n): return 8 if n == 1 else 4*(n-1)*(8*n-1) + 8*sum(totient(i)*(n+1-i)*(n+i+1) for i in range(2,n//2+1)) + 8*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
A332598
Number of vertices in a "frame" of size n X n (see Comments in A331776 for definition).
Original entry on oeis.org
5, 27, 152, 364, 776, 1340, 2272, 3532, 5336, 7516, 10592, 14316, 19328, 25100, 32176, 40428, 50848, 62476, 76824, 93020, 111880, 132492, 157056, 184140, 215552, 249452, 287928, 329900, 378216, 429852, 488768, 552572, 623104, 697884, 780464, 868588, 967056
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 5 elif n=2 then 27 else 12*n^2 - 24*n + 8 + 4*V(n,n,1) - 4*V(n, n, 2); fi;
[seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
a(n) = if(n<3, 22*n - 17, 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) - 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + 12*n^2 - 24*n + 8); \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A332598(n): return 22*n-17 if n <= 2 else 4*(n-1)*(3*n-1) + 12*sum(totient(i)*(n+1-i)*i for i in range(2,n//2+1)) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
Showing 1-7 of 7 results.
Comments