cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A331755 Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1

Views

Author

N. J. A. Sloane, Feb 02 2020

Keywords

Crossrefs

Cf. A290131 (regions), A290132 (edges), A333274 (polygons per vertex), A333276, A159065.
For K_n see A007569, A007678, A135563.

Programs

  • Maple
    # Maple code from N. J. A. Sloane, Jul 16 2020
    V106i := proc(n) local ans,a,b; ans:=0;
    for a from 1 to n-1 do for b from 1 to n-1 do
    if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004
    V106ii := proc(n) local ans,a,b; ans:=0;
    for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do
    if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761
    A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
  • Mathematica
    a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)

Formula

a(n) = A290132(n) - A290131(n) + 1.
a(n) = A159065(n) + 2*n.
This is column 1 of A331453.
a(n) = (9/(8*Pi^2))*n^4 + O(n^3 log(n)). Asymptotic to (9/(2*Pi^2))*A000537(n-1). [Stéphane Legendre, see A159065.]

A334701 Consider the figure made up of a row of n adjacent congruent rectangles, with diagonals of all possible rectangles drawn; a(n) = number of interior vertices where exactly two lines cross.

Original entry on oeis.org

1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, 1912, 2622, 3624, 4690, 6096, 7686, 9764, 12010, 14866, 18026, 21904, 25918, 30818, 36246, 42654, 49246, 57006, 65334, 75098, 85414, 97384, 110138, 124726, 139642, 156286, 174018, 194106, 214570, 237534, 261666, 288686, 316770, 348048, 380798, 416524, 452794, 492830
Offset: 1

Views

Author

Keywords

Comments

It would be nice to have a formula or recurrence. - N. J. A. Sloane, Jun 22 2020

Crossrefs

Column 4 of array in A333275.
See also A115004, A331761.

Formula

Conjecture: As n -> oo, a(n) ~ C*n^4/Pi^2, where C is about 0.95 (compare A115004, A331761). - N. J. A. Sloane, Jul 03 2020

Extensions

More terms from Lars Blomberg, Jun 17 2020

A331762 Triangle read by rows: T(n,k) (1 <= k <= n) = Sum_{i=1..n, j=1..k, gcd(i,j)=2} (n+1-i)*(k+1-j).

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 0, 4, 8, 15, 0, 6, 12, 22, 32, 0, 9, 18, 33, 48, 71, 0, 12, 24, 44, 64, 94, 124, 0, 16, 32, 58, 84, 123, 162, 211, 0, 20, 40, 72, 104, 152, 200, 260, 320, 0, 25, 50, 90, 130, 190, 250, 325, 400, 499
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2020

Keywords

Examples

			Triangle begins:
  0;
  0,  1;
  0,  2,  4;
  0,  4,  8,  15;
  0,  6, 12,  22,  32;
  0,  9, 18,  33,  48,  71;
  0, 12, 24,  44,  64,  94, 124;
  0, 16, 32,  58,  84, 123, 162, 211;
  0, 20, 40,  72, 104, 152, 200, 260, 320;
  0, 25, 50,  90, 130, 190, 250, 325, 400, 499;
  0, 30, 60, 108, 156, 228, 300, 390, 480, 598, 716;
  ...
		

Crossrefs

The main diagonal is A331761.
See A335683 for another version.

Programs

  • Maple
    V := proc(m,n,q) local a,i,j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    for m from 1 to 12 do
    lprint([seq(V(m,n,2),n=1..m)]); od:
  • Mathematica
    Table[Sum[Boole[GCD[i, j] == 2] (n + 1 - i) (k + 1 - j), {i, n}, {j, k}], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 04 2020 *)

A332596 Number of quadrilateral regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 8.

Original entry on oeis.org

0, 1, 10, 26, 63, 107, 189, 294, 455, 627, 891, 1202, 1650, 2121, 2719, 3392, 4292, 5239, 6470, 7832, 9463, 11129, 13205, 15460, 18164, 20919, 24130, 27572, 31679, 35945, 40977, 46340, 52384, 58511, 65421, 72718, 81104, 89589, 98989, 108860, 120062, 131551
Offset: 1

Views

Author

Keywords

Comments

See A331776 for many other illustrations.
Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004) and z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 2, 8*a(n) = 4*z(n) - 8*z_2(n) + 8*n^2 - 36*n + 24. - Scott R. Shannon and N. J. A. Sloane, Mar 06 2020

Crossrefs

Programs

  • Maple
    V := proc(m, n, q) local a, i, j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    f := n -> if n=1 then 0 else 8*n^2 - 36*n + 24 + 4*V(n,n,1) 8*V(n, n, 2); fi;
    [seq(f(n)/8, n=1..60)]; # N. J. A. Sloane, Mar 10 2020
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0)))/2 - sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + n^2 - 9*n/2 + 3; \\ Jinyuan Wang, Aug 07 2021
    
  • Python
    from sympy import totient
    def A332596(n): return 0 if n == 1 else ((n-1)*(n-4) - sum(totient(i)*(n+1-i)*(2*n+2-7*i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)))//2 # Chai Wah Wu, Aug 16 2021

Formula

For n > 1, a(n) = ((n-1)*(n-4) - Sum_{i=2..floor(n/2)} (n+1-i)*(2*n+2-7*i)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i))/2. - Chai Wah Wu, Aug 16 2021

Extensions

More terms from N. J. A. Sloane, Mar 10 2020

A332595 Number of triangular regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 4.

Original entry on oeis.org

1, 12, 32, 72, 128, 232, 368, 576, 832, 1232, 1712, 2328, 3040, 4040, 5184, 6616, 8224, 10248, 12496, 15144, 18048, 21688, 25664, 30184, 35072, 41000, 47392, 54608, 62336, 71088, 80416, 90864, 101952, 114832, 128480, 143352, 159040, 176984, 195888, 216424, 237984, 261624, 286384, 313184, 341184, 372496, 405184
Offset: 1

Views

Author

Keywords

Comments

See A331776 for many other illustrations.
Theorem. Let z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 2, a(n) = 2*(z_2(n) + (n+3)*(n-1)). - Scott R. Shannon and N. J. A. Sloane, Mar 06 2020

Crossrefs

Programs

  • Maple
    V := proc(m,n,q) local a,i,j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    f := n -> if n=1 then 4 else 8*n^2 + 16*n - 24 + 8*V(n,n,2); fi;
    [seq(f(n)/4, n=1..60)]; # N. J. A. Sloane, Mar 09 2020

Extensions

More terms from N. J. A. Sloane, Mar 09 2020

A332597 Number of edges in a "frame" of size n X n (see Comments in A331776 for definition).

Original entry on oeis.org

8, 92, 360, 860, 1792, 3124, 5256, 8188, 12304, 17460, 24568, 33244, 44688, 58228, 74664, 94028, 118080, 145380, 178568, 216252, 259776, 308276, 365352, 428556, 501152, 580804, 670536, 768908, 880992, 1001764, 1138248, 1286748, 1449984, 1625300, 1817752, 2023740, 2252048, 2495476, 2759304, 3040460, 3349056
Offset: 1

Views

Author

Keywords

Comments

See A331776 for many other illustrations.
Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004) and z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 2, a(n) = 8*z(n) - 4*z_2(n) + 28*n^2 - 44*n + 8. - Scott R. Shannon and N. J. A. Sloane, Mar 06 2020

Crossrefs

Cf. A115004, A331761, A331776 (regions), A332598 (vertices).

Programs

  • Maple
    V := proc(m, n, q) local a, i, j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    f := n -> if n=1 then 8 else 28*n^2 - 44*n + 8 + 8*V(n,n,1) - 4*V(n, n, 2); fi;
    [seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
  • Python
    from sympy import totient
    def A332597(n): return 8 if n == 1 else 4*(n-1)*(8*n-1) + 8*sum(totient(i)*(n+1-i)*(n+i+1) for i in range(2,n//2+1)) + 8*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

For n > 1, a(n) = 4*(n-1)*(8*n-1) + 8*Sum_{i=2..floor(n/2)} (n+1-i)*(n+i+1)*phi(i) + 8*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

More terms from N. J. A. Sloane, Mar 10 2020

A332598 Number of vertices in a "frame" of size n X n (see Comments in A331776 for definition).

Original entry on oeis.org

5, 27, 152, 364, 776, 1340, 2272, 3532, 5336, 7516, 10592, 14316, 19328, 25100, 32176, 40428, 50848, 62476, 76824, 93020, 111880, 132492, 157056, 184140, 215552, 249452, 287928, 329900, 378216, 429852, 488768, 552572, 623104, 697884, 780464, 868588, 967056
Offset: 1

Views

Author

Keywords

Comments

See A331776 for many other illustrations.
Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004) and z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 3, a(n) = 4*z(n) - 4*z_2(n) + 12*n^2 - 24*n + 8. (This does not hold for n<3, because it uses Euler's formula, and the graph for n<3 has no hole, so has genus 0, whereas for n>=3 there is a hole and the graph has genus 1.) - Scott R. Shannon and N. J. A. Sloane, Mar 04 2020

Crossrefs

Cf. A331776 (regions), A332597 (edges).

Programs

  • Maple
    V := proc(m, n, q) local a, i, j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    f := n -> if n=1 then 5 elif n=2 then 27 else 12*n^2 - 24*n + 8 + 4*V(n,n,1) - 4*V(n, n, 2); fi;
    [seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
  • PARI
    a(n) = if(n<3, 22*n - 17, 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) - 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + 12*n^2 - 24*n + 8); \\ Jinyuan Wang, Aug 07 2021
    
  • Python
    from sympy import totient
    def A332598(n): return 22*n-17 if n <= 2 else 4*(n-1)*(3*n-1) + 12*sum(totient(i)*(n+1-i)*i for i in range(2,n//2+1)) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

For n > 2, a(n) = 4*(n-1)*(3n-1)+12*Sum_{i=2..floor(n/2)} (n+1-i)*i*phi(i) + 4*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

More terms from N. J. A. Sloane, Mar 10 2020
Showing 1-7 of 7 results.