cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123516 Triangle read by rows: T(n,k) = (-1)^k * n! * 2^(n-2*k) * binomial(n,k) * binomial(2*k,k) (0<=k<=n).

Original entry on oeis.org

1, 2, -1, 8, -8, 3, 48, -72, 54, -15, 384, -768, 864, -480, 105, 3840, -9600, 14400, -12000, 5250, -945, 46080, -138240, 259200, -288000, 189000, -68040, 10395, 645120, -2257920, 5080320, -7056000, 6174000, -3333960, 1018710, -135135, 10321920, -41287680, 108380160, -180633600, 197568000
Offset: 0

Views

Author

Emeric Deutsch, Oct 14 2006

Keywords

Comments

Row sums yield the double factorial numbers (A001147).

Examples

			Triangle begins:
  1;
  2,     -1;
  8,     -8,      3;
  48,    -72,     54,     -15;
  384,   -768,    864,    -480,    105;
  3840,  -9600,   14400,  -12000,  5250,   -945;
  46080, -138240, 259200, -288000, 189000, -68040, 10395;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(-1)^k*Factorial(n)*2^(n-2*k)* Binomial(n,k)*Binomial(2*k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 15 2017
  • Maple
    T:=(n,k)->(-1)^k*n!*2^(n-2*k)*binomial(n,k)*binomial(2*k,k): for n from 0 to 8 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[(-1)^k*n! 2^(n - 2 k)*Binomial[n, k]*Binomial[2*k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 14 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^k*n!*2^(n-2*k)*binomial(n,k)* binomial(2*k,k), ", "))) \\ G. C. Greubel, Oct 14 2017
    

Formula

T(n,0) = 2^n * n! = A000165(n).
T(n,n) = (-1)^n*A001147(n).
From Peter Bala, Aug 09 2024: (Start)
The polynomial P(n, x) = Sum_{k = 0..n} T(n, k)*x^(n-k) satisfies the functional equation P(n, 1 - x) = (-1)^n*P(n, x).
P(n, x) = (2*n - 1)*(2*x - 1)*P(n-1, x) + 4*(n - 1)^2*x*(1 - x)*P(n-2, x) with P(0, x) = 1 and P(1, x) = 2*x - 1.
P(n, 1/2) = A177145(n+1); P(n, -1/2) = (-1)^n*A331817(n).
Conjecture 1: for n >= 1, the zeros of P(n, x) lie on the vertical line Re(x) = 1/2 in the complex plane; that is, the family of polynomials {P(n, x) : n >= 1} satisfies a Riemann hypothesis.
Set u = x^2 and define p(n, u) = P(n, 1/2 + x) if n is even, else p(n, x) = (1/x)* P(n, 1/2 + x). The first few polynomials are p(0, u) = 1, p(1, u) = 2, p(2, u) = 8*u + 1, p(3, u) = 48*u + 18 and p(4, u) = 384*u^2 + 288*u + 9.
Conjecture 2: for n >= 2, the zeros of p(n+1, u) are negative and interlace the zeros of p(n, u). (End)

A368235 Triangle read by rows: n-th row polynomial equals the numerator of the rational function (-1)^n*f(x) * (d/dx)^n (1/f(x)), where f(x) = sqrt(x + x^2).

Original entry on oeis.org

1, 1, 2, 3, 8, 8, 15, 54, 72, 48, 105, 480, 864, 768, 384, 945, 5250, 12000, 14400, 9600, 3840, 10395, 68040, 189000, 288000, 259200, 138240, 46080, 135135, 1018710, 3333960, 6174000, 7056000, 5080320, 2257920, 645120, 2027025, 17297280, 65197440, 142248960, 197568000, 180633600, 108380160, 41287680, 10321920
Offset: 0

Views

Author

Peter Bala, Dec 18 2023

Keywords

Comments

Unsigned row reverse of A123516.
The row polynomials also occur on repeated integration of 1/sqrt(x + x^2). See the example section.

Examples

			Triangle begins
 n\k |     0       1        2        3        4        5       6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0  |     1
  1  |     1       2
  2  |     3       8        8
  3  |    15      54       72       48
  4  |   105     480      864      768      384
  5  |   945    5250    12000    14400     9600     3840
  6  | 10395   68040   189000   288000   259200   138240   46080
 ...
Repeated integration of 1/f(x), where f(x) = sqrt(x + x^2):
Let I denote the integral operator h(x) -> Integral_{t = 0..x} h(t) dt.
Let g(x) = I(1/f(x)) = log(2*x + 1 + 2*f(x)). Then
(2^1 * 1!^2) * I^(2)(1/f(x)) = (2*x + 1)*g(x) - 2*f(x).
(2^2 * 2!^2) * I^(3)(1/f(x)) = (8*x^2 + 8*x + 3)*g(x) - 6*(2*x + 1)*f(x).
(2^3 * 3!^2) * I^(4)(1/f(x)) = (48*x^3 + 72*x^2 + 54*x + 15)*g(x) - 2*(44*x^2 + 44*x + 15)*f(x).
(2^4 * 4!^2) * I^(5)(1/f(x)) = (384*x^4 + 768*x^3 + 864*x^2 + 480*x + 105)*g(x) - 10*(2*x + 1)*(40*x^2 + 40*x + 21)*f(x).
		

Crossrefs

Cf. A001147 (column 1), 2*A161120 (column 2), A000165 (main diagonal) A014479 (first subdiagonal), 3*A286725 (second subdiagonal).

Programs

  • Maple
    # sequence in triangular form
    T := (n, k) -> n! * 2^(2*k-n) * binomial(n, k)*binomial(2*n-2*k, n-k):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;

Formula

T(n, k) = n! * 2^(2*k-n) * binomial(n, k) * binomial(2*n-2*k, n-k).
k*T(n, k) = (2*n^2)*T(n-1, k-1) for k >= 1 with T(n, 0) = (2*n - 1)!! = A001147(n).
T(n, 1) = 2*A161120(n).
T(n, n) = 2^n * n! = A000165(n); T(n+1, n) = 2^n * n! * (n+1)^2 = A014479(n);
T(n+2, n) = 3 * 2^(n-1)*(n+2)!*binomial(n+2, 2) = 3 * A286725(n).
More generally, T(n+r, n) = (2*r - 1)!! * A286724(n+r, r).
E.g.f.: Sum_{k >= 0} (1/2^k)*binomial(2*k, k)*t^k/(1 - 2*t*x)^(k+1) = 1 + (1 + 2*x)*t + (3 + 8*x + 8*x^2)*t^2/2! + (15 + 54*x + 72*x^2 + 48*x^3)*t^3/3! + ....
n-th row polynomial R(n, x) = (-2)^n*(x + x^2)^(n+1/2)*(d/dx)^n (1/sqrt(x + x^2)).
Recurrence for row polynomials:
R(n+1, x) = (2*x + 1)*(2*n + 1)*R(n, x) - 4*x*(x + 1)*n^2*R(n-1, x), with R(0, x) = 1.
R'(n, x) = 2*n^2 * R(n-1, x) for n >= 1.
Functional equation: R(n, -1 - x) = (-1)^n * R(n, x).
Conjecture: the zeros of the polynomial R(n, -x) lie on the vertical line Re(x) = 1/2 in the complex plane.
(-1)^n * x^n * R(n, (- 1 - x)/x) equals the n-th row polynomial of A123516.
(1 - x)^n * R(n, x/(1 - x)) equals the n-th row polynomial of A059366.
Let D denote the operator (1/x)*d/dx. Then D^(n+1)( arcsinh(x) ) = (-1)^n*R(n, x^2)/(x*sqrt(1 + x^2))^(2*n+1).
R(n, 1/2) = A331817(n); R(n, -1/2) = A177145(n+1);
(2^n) * R(n, 1/4) = A098461(n).
Alternating row sums R(n, -1) = (-1)^n * A001147(n).
Showing 1-2 of 2 results.