A331844 Number of compositions (ordered partitions) of n into distinct squares.
1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 3, 8, 0, 0, 8, 30, 0, 0, 0, 2, 6, 1, 2, 6, 24, 2, 8, 6, 0, 0, 8, 30, 0, 0, 7, 32, 24, 2, 8, 30, 120, 6, 24, 2, 6, 0, 8, 36, 24, 1, 34, 150, 0, 2, 12, 30, 24, 0, 2, 38, 150, 0, 12, 78, 144, 2
Offset: 0
Keywords
Examples
a(14) = 6 because we have [9,4,1], [9,1,4], [4,9,1], [4,1,9], [1,9,4] and [1,4,9].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(i*(i+1)*(2*i+1)/6
n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p))) end: a:= n-> b(n, isqrt(n), 0): seq(a(n), n=0..82); # Alois P. Heinz, Jan 30 2020 -
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]]; a[n_] := b[n, Sqrt[n] // Floor, 0]; a /@ Range[0, 82] (* Jean-François Alcover, Oct 29 2020, after Alois P. Heinz *)