A331863
Numbers k such that R(k) - 10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
8, 12, 17, 20, 24, 42, 1124, 1169, 1538, 7902, 27617, 29684
Offset: 1
For k = 8, R(8) - 10^(4-1) = 11110111 is prime.
For k = 12, R(12) - 10^(6-1) = 111111011111 is prime.
For k = 17, R(12) - 10^(8-1) = 11111111101111111 is prime.
Cf.
A002275 (repunits),
A011557 (powers of 10),
A065074 (near-repunit primes that contain the digit 0),
A138148 (Cyclop numbers with digits 0 & 1).
Cf.
A331862 (variant with floor(n/2) instead of floor(n/2-1)),
A331860 (variant with + (digit 2) instead of - (digit 0)).
A331861
Numbers n for which R(n) + 10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
1, 6, 10, 18, 24, 4978
Offset: 1
For n = 1, R(n) + 10^floor(n/2) = 2 is prime.
For n = 6, R(n) + 10^floor(n/2) = 112111 is prime.
For n = 10, R(n) + 10^floor(n/2) = 1111211111 is prime.
Cf.
A331860 (variant with floor(n/2-1) instead of floor(n/2)),
A331862 (variant with - (digit 0) instead of + (digit 2)).
A331866
Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1
For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime.
For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime.
For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime.
For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))
A331869
Numbers n for which R(n) + 4*10^floor(n/2) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
1, 3, 4, 15, 76, 91, 231, 1363, 1714, 1942, 2497, 4963, 5379, 12397, 23224, 26395
Offset: 1
For n = 1, R(1) + 4*10^floor(1/2) = 5 is prime.
For n = 3, R(3) + 4*10^floor(3/2) = 151 is prime.
For n = 4, R(4) + 4*10^floor(4/2) = 1511 is prime.
For n = 15, R(15) + 4*10^floor(15/2) = 111111151111111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+4*10^(n\2))&&print1(n","))
Showing 1-4 of 4 results.
Comments