A331860
Numbers k such that R(k) + 10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
6, 7, 12, 31, 58, 127, 454, 556, 558, 604, 2944, 8118, 12078, 16942, 26268, 45198
Offset: 1
For n = 6, R(6) + 10^(3-1) = 111211 is prime.
For n = 7, R(7) + 10^(3-1) = 1111211 is prime.
For n = 12, R(12) + 10^(6-1) = 111111211111 is prime.
Cf.
A331861 (variant with floor(n/2) instead of floor(n/2-1)),
A331863 (variant with - (digit 0) instead of + (digit 2)).
A331862
Numbers n for which R(n) - 10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
3, 26, 186, 206, 258, 3486, 12602
Offset: 1
For n = 3, R(n) - 10^floor(n/2) = 101 is prime.
For n = 26, R(n) - 10^floor(n/2) = 11111111111101111111111111 is prime.
Cf.
A002275 (repunits),
A004023 (indices of prime repunits),
A011557 (powers of 10),
A065074 (near-repunit primes that contain the digit 0),
A105992 (near-repunit primes),
A138148 (Cyclops numbers with digits 0 & 1).
Cf.
A331860 (variant with digit 2 instead of digit 0),
A331863 (variant with floor(n/2-1) instead of floor(n/2)).
A331864
Numbers k such that R(k) + 2*10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
2, 3, 5, 8, 9, 39, 78, 81, 155, 249, 387, 395, 510, 711, 1173, 1751, 10245
Offset: 1
For k = 2, R(2) + 2*10^(1-1) = 13 is prime.
For k = 3, R(3) + 2*10^(1-1) = 113 is prime.
For k = 5, R(5) + 2*10^(2-1) = 11131 is prime.
For k = 8, R(8) + 2*10^(4-1) = 11113111 is prime.
Cf.
A331865 (variant with floor(n/2) instead of floor(n/2-1)),
A331860,
A331863 (variants with digit 2 resp. 0 instead of digit 3).
A331865
Numbers n for which R(n) + 2*10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 12, 20, 39, 74, 78, 80, 84, 104, 195, 654, 980, 2076, 5940, 19637
Offset: 1
For n = 0, R(0) + 2*10^floor(0/2) = 2 is prime.
For n = 1, R(1) + 2*10^floor(1/2) = 3 is prime.
For n = 2, R(2) + 2*10^floor(2/2) = 31 is prime.
For n = 3, R(3) + 2*10^floor(3/2) = 131 is prime.
For n = 5, R(5) + 2*10^floor(5/2) = 11311 is prime.
For n = 6, R(6) + 2*10^floor(6/2) = 113111 is prime.
Cf.
A331860 &
A331863 (variants with digit 2 resp. 0 instead of 3),
A331864 (variant with floor(n/2-1) instead of floor(n/2)).
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 2*10^Floor[#/2]] &] (* Michael De Vlieger, Jan 31 2020 *)
-
for(n=0,9999,isprime(p=10^n\9+2*10^(n\2))&&print1(n","))
A331867
Numbers n for which R(n) + 3*10^floor(n/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
68, 5252, 5494, 7102
Offset: 1
For n = 2, R(2) + 3*10^floor(2/2-1) = 14 = 2*7 is not prime.
For n = 3, R(3) + 3*10^floor(3/2-1) = 114 = 2*3*19 is not prime.
For n = 4, R(4) + 3*10^floor(4/2) = 1141 = 7*163 is not prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11141 = 13*857 is not prime.
For n = 68, R(68) + 3*10^floor(68/2) = 1...1141...1 is prime, with 34 digits '1' to the left of a digit '4' and 33 digits '1' to its right.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2 - 1]] &] (* corrected by Amiram Eldar, Feb 10 2020 *)
-
for(n=2,9999,isprime(p=10^n\9+3*10^(n\2-1))&&print1(n","))
A331868
Numbers k for which R(k) + 4*10^floor(k/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
4, 147, 270, 1288, 1551, 3427
Offset: 1
For n = 4, R(4) + 4*10^floor(4/2-1) = 1151 is prime.
For n = 5, R(5) + 4*10^floor(5/2-1) = 11151 = 3^3*7*59 is not prime.
For n = 147, R(147) + 4*10^72 = 1(74)51(72) is prime, where (.) indicates how many times the preceding digit is repeated.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2 - 1]] &]
-
for(n=2,9999,isprime(p=10^n\9+4*10^(n\2-1))&&print1(n","))
Showing 1-6 of 6 results.
Comments