A332113
a(n) = (10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)3(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11311...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332123 ..
A332193 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
-
def A332113(n): return 10**(n*2+1)//9+2*10**n
A331865
Numbers n for which R(n) + 2*10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 12, 20, 39, 74, 78, 80, 84, 104, 195, 654, 980, 2076, 5940, 19637
Offset: 1
For n = 0, R(0) + 2*10^floor(0/2) = 2 is prime.
For n = 1, R(1) + 2*10^floor(1/2) = 3 is prime.
For n = 2, R(2) + 2*10^floor(2/2) = 31 is prime.
For n = 3, R(3) + 2*10^floor(3/2) = 131 is prime.
For n = 5, R(5) + 2*10^floor(5/2) = 11311 is prime.
For n = 6, R(6) + 2*10^floor(6/2) = 113111 is prime.
Cf.
A331860 &
A331863 (variants with digit 2 resp. 0 instead of 3),
A331864 (variant with floor(n/2-1) instead of floor(n/2)).
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 2*10^Floor[#/2]] &] (* Michael De Vlieger, Jan 31 2020 *)
-
for(n=0,9999,isprime(p=10^n\9+2*10^(n\2))&&print1(n","))
A331867
Numbers n for which R(n) + 3*10^floor(n/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
68, 5252, 5494, 7102
Offset: 1
For n = 2, R(2) + 3*10^floor(2/2-1) = 14 = 2*7 is not prime.
For n = 3, R(3) + 3*10^floor(3/2-1) = 114 = 2*3*19 is not prime.
For n = 4, R(4) + 3*10^floor(4/2) = 1141 = 7*163 is not prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11141 = 13*857 is not prime.
For n = 68, R(68) + 3*10^floor(68/2) = 1...1141...1 is prime, with 34 digits '1' to the left of a digit '4' and 33 digits '1' to its right.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2 - 1]] &] (* corrected by Amiram Eldar, Feb 10 2020 *)
-
for(n=2,9999,isprime(p=10^n\9+3*10^(n\2-1))&&print1(n","))
A331868
Numbers k for which R(k) + 4*10^floor(k/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
4, 147, 270, 1288, 1551, 3427
Offset: 1
For n = 4, R(4) + 4*10^floor(4/2-1) = 1151 is prime.
For n = 5, R(5) + 4*10^floor(5/2-1) = 11151 = 3^3*7*59 is not prime.
For n = 147, R(147) + 4*10^72 = 1(74)51(72) is prime, where (.) indicates how many times the preceding digit is repeated.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2 - 1]] &]
-
for(n=2,9999,isprime(p=10^n\9+4*10^(n\2-1))&&print1(n","))
Showing 1-4 of 4 results.
Comments