A332114
a(n) = (10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
4, 141, 11411, 1114111, 111141111, 11111411111, 1111114111111, 111111141111111, 11111111411111111, 1111111114111111111, 111111111141111111111, 11111111111411111111111, 1111111111114111111111111, 111111111111141111111111111, 11111111111111411111111111111, 1111111111111114111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)4(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11411...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332124 ..
A332194 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332114 := n -> (10^(2*n+1)-1)/9+3*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332114(n)=10^(n*2+1)\9+3*10^n}, [0..15])
-
def A332114(n): return 10**(n*2+1)//9+3*10**n
A331866
Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1
For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime.
For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime.
For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime.
For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))
A331868
Numbers k for which R(k) + 4*10^floor(k/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
4, 147, 270, 1288, 1551, 3427
Offset: 1
For n = 4, R(4) + 4*10^floor(4/2-1) = 1151 is prime.
For n = 5, R(5) + 4*10^floor(5/2-1) = 11151 = 3^3*7*59 is not prime.
For n = 147, R(147) + 4*10^72 = 1(74)51(72) is prime, where (.) indicates how many times the preceding digit is repeated.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2 - 1]] &]
-
for(n=2,9999,isprime(p=10^n\9+4*10^(n\2-1))&&print1(n","))
Showing 1-3 of 3 results.
Comments