A332112
a(n) = (10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
2, 121, 11211, 1112111, 111121111, 11111211111, 1111112111111, 111111121111111, 11111111211111111, 1111111112111111111, 111111111121111111111, 11111111111211111111111, 1111111111112111111111111, 111111111111121111111111111, 11111111111111211111111111111, 1111111111111112111111111111111
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332132 ..
A332192 (variants with different repeated digit 3, ..., 9).
Cf.
A332113 ..
A332119 (variants with different middle digit 3, ..., 9).
Cf.
A331860 &
A331861 (indices of primes in non-palindromic variants).
-
A332112 := n -> (10^(2*n+1)-1)/9+10^n;
-
Array[ (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332112(n)=10^(n*2+1)\9*1+10^n}, [0..15])
-
def A332112(n): return 10**(n*2+1)//9+10**n
A331863
Numbers k such that R(k) - 10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
8, 12, 17, 20, 24, 42, 1124, 1169, 1538, 7902, 27617, 29684
Offset: 1
For k = 8, R(8) - 10^(4-1) = 11110111 is prime.
For k = 12, R(12) - 10^(6-1) = 111111011111 is prime.
For k = 17, R(12) - 10^(8-1) = 11111111101111111 is prime.
Cf.
A002275 (repunits),
A011557 (powers of 10),
A065074 (near-repunit primes that contain the digit 0),
A138148 (Cyclop numbers with digits 0 & 1).
Cf.
A331862 (variant with floor(n/2) instead of floor(n/2-1)),
A331860 (variant with + (digit 2) instead of - (digit 0)).
A331861
Numbers n for which R(n) + 10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
1, 6, 10, 18, 24, 4978
Offset: 1
For n = 1, R(n) + 10^floor(n/2) = 2 is prime.
For n = 6, R(n) + 10^floor(n/2) = 112111 is prime.
For n = 10, R(n) + 10^floor(n/2) = 1111211111 is prime.
Cf.
A331860 (variant with floor(n/2-1) instead of floor(n/2)),
A331862 (variant with - (digit 0) instead of + (digit 2)).
A331862
Numbers n for which R(n) - 10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
3, 26, 186, 206, 258, 3486, 12602
Offset: 1
For n = 3, R(n) - 10^floor(n/2) = 101 is prime.
For n = 26, R(n) - 10^floor(n/2) = 11111111111101111111111111 is prime.
Cf.
A002275 (repunits),
A004023 (indices of prime repunits),
A011557 (powers of 10),
A065074 (near-repunit primes that contain the digit 0),
A105992 (near-repunit primes),
A138148 (Cyclops numbers with digits 0 & 1).
Cf.
A331860 (variant with digit 2 instead of digit 0),
A331863 (variant with floor(n/2-1) instead of floor(n/2)).
A331864
Numbers k such that R(k) + 2*10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
2, 3, 5, 8, 9, 39, 78, 81, 155, 249, 387, 395, 510, 711, 1173, 1751, 10245
Offset: 1
For k = 2, R(2) + 2*10^(1-1) = 13 is prime.
For k = 3, R(3) + 2*10^(1-1) = 113 is prime.
For k = 5, R(5) + 2*10^(2-1) = 11131 is prime.
For k = 8, R(8) + 2*10^(4-1) = 11113111 is prime.
Cf.
A331865 (variant with floor(n/2) instead of floor(n/2-1)),
A331860,
A331863 (variants with digit 2 resp. 0 instead of digit 3).
A331865
Numbers n for which R(n) + 2*10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 12, 20, 39, 74, 78, 80, 84, 104, 195, 654, 980, 2076, 5940, 19637
Offset: 1
For n = 0, R(0) + 2*10^floor(0/2) = 2 is prime.
For n = 1, R(1) + 2*10^floor(1/2) = 3 is prime.
For n = 2, R(2) + 2*10^floor(2/2) = 31 is prime.
For n = 3, R(3) + 2*10^floor(3/2) = 131 is prime.
For n = 5, R(5) + 2*10^floor(5/2) = 11311 is prime.
For n = 6, R(6) + 2*10^floor(6/2) = 113111 is prime.
Cf.
A331860 &
A331863 (variants with digit 2 resp. 0 instead of 3),
A331864 (variant with floor(n/2-1) instead of floor(n/2)).
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 2*10^Floor[#/2]] &] (* Michael De Vlieger, Jan 31 2020 *)
-
for(n=0,9999,isprime(p=10^n\9+2*10^(n\2))&&print1(n","))
A331867
Numbers n for which R(n) + 3*10^floor(n/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
68, 5252, 5494, 7102
Offset: 1
For n = 2, R(2) + 3*10^floor(2/2-1) = 14 = 2*7 is not prime.
For n = 3, R(3) + 3*10^floor(3/2-1) = 114 = 2*3*19 is not prime.
For n = 4, R(4) + 3*10^floor(4/2) = 1141 = 7*163 is not prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11141 = 13*857 is not prime.
For n = 68, R(68) + 3*10^floor(68/2) = 1...1141...1 is prime, with 34 digits '1' to the left of a digit '4' and 33 digits '1' to its right.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2 - 1]] &] (* corrected by Amiram Eldar, Feb 10 2020 *)
-
for(n=2,9999,isprime(p=10^n\9+3*10^(n\2-1))&&print1(n","))
A331868
Numbers k for which R(k) + 4*10^floor(k/2-1) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
4, 147, 270, 1288, 1551, 3427
Offset: 1
For n = 4, R(4) + 4*10^floor(4/2-1) = 1151 is prime.
For n = 5, R(5) + 4*10^floor(5/2-1) = 11151 = 3^3*7*59 is not prime.
For n = 147, R(147) + 4*10^72 = 1(74)51(72) is prime, where (.) indicates how many times the preceding digit is repeated.
-
Select[Range[2, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2 - 1]] &]
-
for(n=2,9999,isprime(p=10^n\9+4*10^(n\2-1))&&print1(n","))
Showing 1-8 of 8 results.
Comments