A332112
a(n) = (10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
2, 121, 11211, 1112111, 111121111, 11111211111, 1111112111111, 111111121111111, 11111111211111111, 1111111112111111111, 111111111121111111111, 11111111111211111111111, 1111111111112111111111111, 111111111111121111111111111, 11111111111111211111111111111, 1111111111111112111111111111111
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332132 ..
A332192 (variants with different repeated digit 3, ..., 9).
Cf.
A332113 ..
A332119 (variants with different middle digit 3, ..., 9).
Cf.
A331860 &
A331861 (indices of primes in non-palindromic variants).
-
A332112 := n -> (10^(2*n+1)-1)/9+10^n;
-
Array[ (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332112(n)=10^(n*2+1)\9*1+10^n}, [0..15])
-
def A332112(n): return 10**(n*2+1)//9+10**n
A331860
Numbers k such that R(k) + 10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
6, 7, 12, 31, 58, 127, 454, 556, 558, 604, 2944, 8118, 12078, 16942, 26268, 45198
Offset: 1
For n = 6, R(6) + 10^(3-1) = 111211 is prime.
For n = 7, R(7) + 10^(3-1) = 1111211 is prime.
For n = 12, R(12) + 10^(6-1) = 111111211111 is prime.
Cf.
A331861 (variant with floor(n/2) instead of floor(n/2-1)),
A331863 (variant with - (digit 0) instead of + (digit 2)).
A331866
Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1
For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime.
For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime.
For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime.
For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))
A331869
Numbers n for which R(n) + 4*10^floor(n/2) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).
Original entry on oeis.org
1, 3, 4, 15, 76, 91, 231, 1363, 1714, 1942, 2497, 4963, 5379, 12397, 23224, 26395
Offset: 1
For n = 1, R(1) + 4*10^floor(1/2) = 5 is prime.
For n = 3, R(3) + 4*10^floor(3/2) = 151 is prime.
For n = 4, R(4) + 4*10^floor(4/2) = 1511 is prime.
For n = 15, R(15) + 4*10^floor(15/2) = 111111151111111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+4*10^(n\2))&&print1(n","))
Showing 1-4 of 4 results.
Comments