cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332112 a(n) = (10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

2, 121, 11211, 1112111, 111121111, 11111211111, 1111112111111, 111111121111111, 11111111211111111, 1111111112111111111, 111111111121111111111, 11111111111211111111111, 1111111111112111111111111, 111111111111121111111111111, 11111111111111211111111111111, 1111111111111112111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

a(0) = 2 is the only prime in this sequence, since all other terms factor as a(n) = R(n+1)*(10^n+1), where R(n) = (10^n-1)/9.

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332132 .. A332192 (variants with different repeated digit 3, ..., 9).
Cf. A332113 .. A332119 (variants with different middle digit 3, ..., 9).
Cf. A331860 & A331861 (indices of primes in non-palindromic variants).

Programs

  • Maple
    A332112 := n -> (10^(2*n+1)-1)/9+10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332112(n)=10^(n*2+1)\9*1+10^n}, [0..15])
    
  • Python
    def A332112(n): return 10**(n*2+1)//9+10**n

Formula

a(n) = A138148(n) + 2*10^n = A002275(2n+1) + 10^n.
G.f.: (2 - 101*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A331860 Numbers k such that R(k) + 10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).

Original entry on oeis.org

6, 7, 12, 31, 58, 127, 454, 556, 558, 604, 2944, 8118, 12078, 16942, 26268, 45198
Offset: 1

Views

Author

M. F. Hasler, Jan 30 2020

Keywords

Comments

The corresponding primes are near-repunit primes, cf. A105992.
In base 10, R(k) + 10^floor(k/2-1) has ceiling(k/2) digits 1, one digit 2 and again floor(k/2-1) digits 1: for even as well as odd k, there is a digit 2 just left of the middle of the repunit of length k.
No term can be congruent to 2 (mod 3). - Chai Wah Wu, Feb 07 2020

Examples

			For n = 6,  R(6)  + 10^(3-1) = 111211 is prime.
For n = 7,  R(7)  + 10^(3-1) = 1111211 is prime.
For n = 12, R(12) + 10^(6-1) = 111111211111 is prime.
		

Crossrefs

Cf. A105992 (near-repunit primes), A002275 (repunits), A011557 (powers of 10).
Cf. A331861 (variant with floor(n/2) instead of floor(n/2-1)), A331863 (variant with - (digit 0) instead of + (digit 2)).

Programs

  • PARI
    for(n=2,999,isprime(p=10^n\9+10^(n\2-1))&&print1(n","))

Extensions

a(8)-a(14) from Giovanni Resta, Jan 31 2020
a(15)-a(16) from Michael S. Branicky, Jul 23 2024

A331866 Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).

Original entry on oeis.org

0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1

Views

Author

M. F. Hasler, Jan 30 2020

Keywords

Comments

The corresponding primes are a subset of the near-repunit primes A105992 (at least when they have k > 2 digits).
In base 10, R(k) + 3*10^floor(k/2) has k digits all of which are 1 except for one digit 4 (for k > 0) located in the center (for odd k) or just to the left of it (for even k): i.e., there are ceiling(k/2)-1 digits 1 to the left and floor(k/2) digits 1 to the right of the digit 4. For odd k, this is a palindrome a.k.a. wing prime, cf. A077780, the subsequence of odd terms.
a(14) = 19378 was found by Amiram Eldar, verified to be the 14th term in collaboration with the author of the sequence and factordb.com. The term a(13) = 3089 corresponds to a certified prime (Ivan Panchenko, 2011, cf. factordb.com); a(12) and a(14) are only PRP as far as we know.

Examples

			For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime.
For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime.
For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime.
For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
		

Crossrefs

Cf. A105992 (near-repunit primes), A002275 (repunits), A004023 (indices of prime repunits), A011557 (powers of 10).
Cf. A331862, A331861, A331865, A331869 (variants with digit 0, 2, 3 or 5 instead of 4), A331867 (variant with floor(n/2-1) instead of floor(n/2)).
Cf. A077780 (odd terms).

Programs

  • Mathematica
    Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
  • PARI
    for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))

Extensions

a(15) from Michael S. Branicky, Sep 24 2024

A331869 Numbers n for which R(n) + 4*10^floor(n/2) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).

Original entry on oeis.org

1, 3, 4, 15, 76, 91, 231, 1363, 1714, 1942, 2497, 4963, 5379, 12397, 23224, 26395
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

For n > 1, the corresponding primes are a subset of A105992: near-repunit primes.
In base 10, R(n) + 4*10^floor(n/2) has ceiling(n/2)-1 digits 1, one digit 5, and again floor(n/2) digits 1, except for n = 0. For odd n, this is a palindrome (a.k.a. wing prime, cf. A077783: subsequence of odd terms), for even n the digit 5 is just left to the middle of the number.
See also the variant A331868 where the digit 5 is just to the right of the middle.

Examples

			For n = 1, R(1) + 4*10^floor(1/2) = 5 is prime.
For n = 3, R(3) + 4*10^floor(3/2) = 151 is prime.
For n = 4, R(4) + 4*10^floor(4/2) = 1511 is prime.
For n = 15, R(15) + 4*10^floor(15/2) = 111111151111111 is prime.
		

Crossrefs

Cf. A105992 (near-repunit primes), A002275 (repunits), A004023 (indices of prime repunits), A011557 (powers of 10).
Cf. A331862, A331861, A331865, A331866 (variants with digit 0, 2, 3 or 4 instead of 5), A331868 (variant with floor(n/2-1) instead of floor(n/2)).
Cf. A077783 (odd terms).

Programs

  • Mathematica
    Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2]] &]
  • PARI
    for(n=0,9999,ispseudoprime(p=10^n\9+4*10^(n\2))&&print1(n","))

Extensions

a(12)-a(14) from Michael S. Branicky, Feb 03 2023
a(15)-a(16) from Michael S. Branicky, Apr 11 2023
Showing 1-4 of 4 results.