A331877 a(n) = number of primes of the form P(k) = k^2 + k + 41 for k <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A331876(n).
17, 97, 586, 4133, 31965, 261022, 2207375, 19129225, 168807923, 1510681420, 13671046376, 124849864598, 1148859448601, 10639680705031, 99077207876785
Offset: 1
References
- See A319906.
Links
- G. H. Hardy and J. E. Littlewood, Some problems in "Partitio numerorum", III: On the expression of a number as a sum of primes, Acta Mathematica, Vol. 44 (1923), pp. 1-70.
- Michael J. Jacobson, Jr. and Hugh C. Williams, New Quadratic Polynomials With High Densities Of Prime Values, Math. Comp., 72, 241, 499-519, 2002.
Programs
-
PARI
C=3.31977317747142166532355685764988796646855; for(n=1,15,print1(round(C*intnum(x=2,10^n,1/log(x))),", "))
Formula
b(m) = round (C * Integral_{x=2..m} x/log(x) dx), with C ~= 3.319773177471..., the Hardy-Littlewood constant for k^2+k+41 (A221712); a(n) = b(10^n).