cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331877 a(n) = number of primes of the form P(k) = k^2 + k + 41 for k <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A331876(n).

Original entry on oeis.org

17, 97, 586, 4133, 31965, 261022, 2207375, 19129225, 168807923, 1510681420, 13671046376, 124849864598, 1148859448601, 10639680705031, 99077207876785
Offset: 1

Views

Author

Hugo Pfoertner, Jan 30 2020

Keywords

References

Crossrefs

Programs

  • PARI
    C=3.31977317747142166532355685764988796646855; for(n=1,15,print1(round(C*intnum(x=2,10^n,1/log(x))),", "))

Formula

b(m) = round (C * Integral_{x=2..m} x/log(x) dx), with C ~= 3.319773177471..., the Hardy-Littlewood constant for k^2+k+41 (A221712); a(n) = b(10^n).

A221712 Hardy-Littlewood constant for x^2+x+41.

Original entry on oeis.org

3, 3, 1, 9, 7, 7, 3, 1, 7, 7, 4, 7, 1, 4, 2, 1, 6, 6, 5, 3, 2, 3, 5, 5, 6, 8, 5, 7, 6, 4, 9, 8, 8, 7, 9, 6, 6, 4, 6, 8, 5, 5, 4, 5, 8, 5, 6, 5, 2, 9, 8, 5, 8, 4, 9, 1, 5, 3, 9, 4, 0, 7, 2, 7, 9, 5, 0, 2, 6, 3, 3, 1, 0, 4, 2, 6, 1, 1, 8, 1, 4, 9, 7, 3, 7, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2013

Keywords

Examples

			3.31977317747142166532355685764988796646855...
		

References

  • Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 265-266.

Crossrefs

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+x+41)/2 after setting the required precision.

Extensions

More terms from Hugo Pfoertner, Jan 31 2020

A319906 Number of prime numbers of the form k^2 + k + 41 below 10^n.

Original entry on oeis.org

0, 8, 31, 86, 221, 581, 1503, 4149, 11355, 31985, 90940, 261081, 756081, 2208197, 6483148, 19132652, 56714624, 168806741, 504209234
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2018

Keywords

Examples

			The first 8 values of k^2 + k + 41 for k = 0 to 7 are above 10 and below 100: 41, 43, 47, 53, 61, 71, 83, 97, thus a(1) = 0 and a(2) = 8.
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • Mathematica
    f[n_] := n^2 + n + 41; c = 0; k = 0; a={}; Do[f1 = f[k]; While[f1 < 10^n, If[PrimeQ[f1], c++]; k++; f1 = f[k]];  AppendTo[a, c], {n, 1, 10}]; a

Formula

According to Hardy and Littlewood's Conjecture F: a(n) ~ 2 * C * 10^(n/2)/(n*log(10)), where C = 3.319773... (Hardy-Littlewood constant for x^2+x+41, A221712).

A228123 Number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^n.

Original entry on oeis.org

1, 10, 86, 581, 4148, 31984, 261080, 2208196, 19132652, 168806740, 1510676802
Offset: 0

Views

Author

Shyam Sunder Gupta, Aug 11 2013

Keywords

Examples

			a(4) = 4148 because the number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^4 are 4148.
		

Crossrefs

Programs

  • Mathematica
    a = 0; n = 1; t = {}; Do[If[PrimeQ[x^2 + x + 41], a = a + 1]; If[Mod[x, n] == 0, n = n*10; AppendTo[t, a]], {x, 1, 1000000000}]; t

Formula

a(n) = A331876(n) - 1. - Amiram Eldar, Sep 23 2023

Extensions

a(10) from Amiram Eldar, Sep 23 2023
Showing 1-4 of 4 results.