A331884 Number of compositions (ordered partitions) of n^2 into distinct squares.
1, 1, 1, 1, 1, 3, 1, 7, 1, 31, 123, 151, 121, 897, 7351, 5415, 14881, 48705, 150583, 468973, 1013163, 1432471, 1730023, 50432107, 14925241, 125269841, 74592537, 241763479, 213156871, 895153173, 7716880623, 2681163865, 3190865761, 22501985413, 116279718801
Offset: 0
Keywords
Examples
a(5) = 3 because we have [25], [16, 9] and [9, 16].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(i*(i+1)*(2*i+1)/6
n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p))) end: a:= n-> b(n^2, n, 0): seq(a(n), n=0..35); # Alois P. Heinz, Jan 30 2020 -
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]]; a[n_] := b[n^2, n, 0]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
Extensions
a(24)-a(34) from Alois P. Heinz, Jan 30 2020