cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331943 a(n) = n^2 + 1 - ceiling((n + 2)/3).

Original entry on oeis.org

1, 3, 8, 15, 23, 34, 47, 61, 78, 97, 117, 140, 165, 191, 220, 251, 283, 318, 355, 393, 434, 477, 521, 568, 617, 667, 720, 775, 831, 890, 951, 1013, 1078, 1145, 1213, 1284, 1357, 1431, 1508, 1587, 1667, 1750, 1835, 1921, 2010, 2101, 2193, 2288, 2385, 2483, 2584
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

Related to expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k as given by A331777/A331778.
The agreement with the results of the PARI code needs an explanation. All numerators corresponding to the computed denominators are 1.

Crossrefs

Programs

  • Mathematica
    Table[n^2+1-Ceiling[(n+2)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,3,8,15,23},60] (* Harvey P. Dale, Aug 30 2021 *)
  • PARI
    H(n)=sum(j=1,n,1/j);
    A(k)=exp(2*(H(k)-Euler))/k^2;
    for(k=1,51,r=(1/k)*(A(k)-1);print1(denominator(bestappr(r,k*k)),", "))

Formula

From Colin Barker, Feb 10 2020: (Start)
G.f.: x*(1 + x + 3*x^2 + x^3) / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: (1/9)*(3*exp(x)*x*(2 + 3*x) + 2*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Feb 14 2020