A331955 Triangle T(n,k) of number of chains of length k in partitions of an n-set ordered by refinement.
1, 0, 1, 0, 2, 1, 0, 5, 7, 3, 0, 15, 45, 49, 18, 0, 52, 306, 640, 565, 180, 0, 203, 2268, 8176, 13055, 9645, 2700, 0, 877, 18425, 108388, 279349, 359555, 227745, 56700, 0, 4140, 163754, 1523922, 5967927, 11918270, 12822110, 7095060, 1587600
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7... 0 1 1 0 1 2 0 2 1 3 0 5 7 3 4 0 15 45 49 18 5 0 52 306 640 565 180 6 0 203 2268 8176 13055 9645 2700 7 0 877 18425 108388 279349 359555 227745 56700 ... The T(3,2) = 7 in the lattice of set partitions of {1,2,3}: {{1},{2},{3}} < {{1,2},{3}}, {{1},{2},{3}} < {{1,3},{2}}, {{1},{2},{3}} < {{1},{2,3}}, {{1},{2},{3}} < {{1,2,3}}, {{1,2},{3}} < {{1,2,3}}, {{1,3},{2}} < {{1,2,3}}, {{1},{2,3}} < {{1,2,3}}.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Equivalent finite fuzzy sets and Stirling numbers, Inf. Sci., 174 (2005), 251-263.
- V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
Crossrefs
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(k<0, 0, `if`({n, k}={0}, 1, add(`if`(k=1, 1, b(v, k-1, 1))*Stirling2(n, v), v=k..n-t))) end: T:= (n, k)-> b(n, k, 0): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 07 2020
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*StirlingS2[n, v], {v, k, n - t}]]]; T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Alois P. Heinz *) T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0), 1, If[k == 1, BellB[n], Sum[If[r >= 0, StirlingS2[n, r]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
-
PARI
b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));} T(n, k) = b(n, k, 0); matrix(8, 8, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 08 2020
Formula
T(0, 0) = 1, T(0, k) = 0 for k > 0.
T(n, k) = Sum_{i_k=k..n} (Sum_{i_(k-1)=k-1..i_k - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling2(n,i_k) * Stirling2(i_k,i_(k-1)) * ... * Stirling2(i_3,i_2) * Stirling2(i_2,i_1)))...)), where 1 <= k <= n.
T(n,k) = Sum_{j=k-1..n-1} Stirling2(n,j)*T(j,k-1), 2 <= k <= n; T(n,1) = Bell(n), n >= 1; T(n,0) = A000007(n). - Rajesh Kumar Mohapatra, Jul 01 2025
Comments