A006472
a(n) = n!*(n-1)!/2^(n-1).
Original entry on oeis.org
1, 1, 3, 18, 180, 2700, 56700, 1587600, 57153600, 2571912000, 141455160000, 9336040560000, 728211163680000, 66267215894880000, 6958057668962400000, 834966920275488000000, 113555501157466368000000, 17373991677092354304000000, 2970952576782792585984000000
Offset: 1
From _Gus Wiseman_, Jul 22 2018: (Start)
The a(3) = 3 maximal chains in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
{{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
{{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}} (End)
From _Rajesh Kumar Mohapatra_, Sep 03 2025: (Start)
The a(3) = 3 maximal chains in the poset of the set of permutations of {1,2,3}:
{(1)(2)(3)} < (12)(3) < (123)}
{(1)(2)(3)} < (1)(23) < (123)}
{(1)(2)(3)} < (13)(2) < (132)} (End)
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
- László Lovász, Combinatorial Problems and Exercises, North-Holland, 1979, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mike Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016, p. 47.
- T. D. Noe, Table of n, a(n) for n = 1..50
- E. H. Dickey, N. A. Rosenberg, Labelled histories with multifurcation and simultaneity, Phil. Trans. R. Soc. B 380 (2025), 20230307.
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011-2012.
- A. W. F. Edwards, Estimation of the branch points of a branching diffusion Process, J. Royal Stat. Soc. Ser. B 32 (1970), 155-164.
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- L. Ferretti, F. Disanto and T. Wiehe, The Effect of Single Recombination Events on Coalescent Tree Height and Shape, PLoS ONE 8(4): e60123.
- O. Frank and K. Svensson, On probability distributions of single-linkage dendrograms, Journal of Statistical Computation and Simulation, 12 (1981), 121-131. (Annotated scanned copy)
- Djamel Himane, A simple proof of Werner Schulte's conjecture, arXiv:2404.08646 [math.GM], 2024. See also Notes Num. Theor. Disc. Math., (2025) Vol. 31, No. 2, 251-225.
- M. E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc., 355, 2003, 3795-3811.
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of the Legendre-Stirling numbers, arXiv:1805.10998 [math.CO], 2018.
- C. L. Mallows, Note to N. J. A. Sloane circa 1979.
- F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
- N. A. Rosenberg, The mean and variance of the numbers of r-pronged nodes and r-caterpillars in Yule-generated genealogical trees, Annals of Combinatorics, 10 (2006), 129-146.
- Thomas Wiehe, Counting, grafting and evolving binary trees, arXiv:2010.06409 [q-bio.PE], 2020.
- Johannes Wirtz, On the enumeration of leaf-labelled increasing trees with arbitrary node-degree, arXiv:2211.03632 [q-bio.PE], 2022. See page 12.
- Index entries for sequences related to factorial numbers.
A330804
Number of chains in partitions of [n] ordered by refinement.
Original entry on oeis.org
1, 1, 3, 15, 127, 1743, 36047, 1051039, 41082783, 2073110239, 131183712063, 10171782421727, 948427290027807, 104693416370374783, 13502772386271932927, 2011983769934772172799, 343000542276546601893439, 66334607666382842941084991, 14444628785932359077548728255, 3518072269888902413311442552511
Offset: 0
Consider the set S = {1, 2, 3}. The a(3) = 5+ 7+ 3 = 15 in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} {{1},{2},{3}} < {{1,2},{3}} {{1},{2},{3}} < {{1,2},{3}} < {{1,2,3}}
{{1,2},{3}} {{1},{2},{3}} < {{1,3},{2}} {{1},{2},{3}} < {{1,3},{2}} < {{1,2,3}}
{{1,3},{2}} {{1},{2},{3}} < {{1},{2,3}} {{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
{{1},{2,3}} {{1},{2},{3}} < {{1,2,3}}
{{1,2,3}} {{1,2},{3}} < {{1,2,3}}
{{1,3},{2}} < {{1,2,3}}
{{1},{2,3}} < {{1,2,3}}
- Alois P. Heinz, Table of n, a(n) for n = 0..262
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Equivalent finite fuzzy sets and Stirling numbers, Inf. Sci., 174 (2005), 251-263.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
-
b:= proc(n, k, t) option remember; `if`(k<0, 0, `if`({n, k}={0}, 1,
add(`if`(k=1, 1, b(v, k-1, 1))*Stirling2(n, v), v=k..n-t)))
end:
a:= n-> add(b(n, k, 0), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 07 2020
# second Maple program:
a:= proc(n) option remember; uses combinat;
bell(n) + add(stirling2(n, i)*a(i), i=1..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 03 2020
-
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*StirlingS2[n, v], {v, k, n - t}]]];
a[n_] := Sum[b[n, k, 0], {k, 0, n}];
a /@ Range[0, 20] (* Jean-François Alcover, Feb 08 2020, after Alois P. Heinz *)
-
b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));}
a(n) = sum(k=0, n, b(n, k, 0);); \\ Michel Marcus, Feb 08 2020
A375836
Number of chains in the poset of permutations of [n].
Original entry on oeis.org
1, 1, 3, 17, 165, 2539, 57597, 1813797, 75733683, 4048845673, 269701306809, 21901093760303, 2129681860984785, 244316156443454237, 32650648748310672739, 5028367353617766838085, 884047390780977994754809, 175979907431515249448486007, 39376198947363790655257792497
Offset: 0
Consider the set S = {1, 2, 3}. The a(3) = 6 + 8 + 3 = 17 in the poset of permutations of {1,2,3}:
|{(1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132)}| = 6;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}|=8;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13) < (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
-
a:= proc(n) option remember;
n!+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
end:
seq(a(n), n=0..18); # Alois P. Heinz, Jul 01 2025
-
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*Abs[StirlingS1[n, v]], {v, k, n - t}]]];
a[n_] := Sum[b[n, k, 0], {k, 0, n}]; a /@ Range[0, 20]
-
from math import factorial as f
from sympy.functions.combinatorial.numbers import stirling as s
from functools import cache
@cache
def a(n): return f(n) + sum(abs(s(n, k, kind=1)) * a(k) for k in range(1, n)) # David Radcliffe, Jul 01 2025
A375838
Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].
Original entry on oeis.org
1, 1, 2, 9, 83, 1270, 28799, 906899, 37866842, 2024422837, 134850653405, 10950546880152, 1064840930492393, 122158078221727119, 16325324374155336370, 2514183676808883419043, 442023695390488997377405, 87989953715757624724243004, 19688099473681895327628896249, 4919839221134662388853128069571, 1365091729320293490230304687026514
Offset: 0
Consider the set S = {1, 2, 3}. The a(3) = 1 + 5 + 3 = 9 in the poset of permutations of {1,2,3}:
|{(1)(2)(3)}| = 1;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123), (1)(2)(3) < (132)}|=5;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13)< (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
-
a:= proc(n) option remember;
1+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 01 2025
-
T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 01 2025, after A375837 *)
A375835
Triangle read by rows: T(n, k) is the number of chains of length k in the poset of permutations of an n-set.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 8, 3, 0, 24, 64, 59, 18, 0, 120, 574, 970, 695, 180, 0, 720, 5858, 16124, 20240, 11955, 2700, 0, 5040, 67752, 285264, 556591, 559895, 282555, 56700, 0, 40320, 880584, 5459712, 15519287, 23585870, 19879370, 8780940, 1587600, 0, 362880, 12746208, 113511982, 451541898, 971214825, 1213062690, 882179550, 347072040, 57153600
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0 1
1 0 1
2 0 2 1
3 0 6 8 3
4 0 24 64 59 18
5 0 120 574 970 695 180
6 0 720 5858 16124 20240 11955 2700
7 0 5040 67752 285264 556591 559895 282555 56700
...
The T(3, 2) = 8 chains in the poset of the permutations of {1, 2, 3} are:
{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}.
-
b := proc(n, k, t) option remember; if k < 0 then return 0 fi; if {n, k} = {0} then return 1 fi; add(ifelse(k = 1, 1, b(v, k - 1, 1))*abs(Stirling1(n, v)), v = k..n-t) end: T := (n, k) -> b(n, k, 0): seq((seq(T(n, k), k=0..n)), n = 0..10); # Peter Luschny, Sep 05 2024
-
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[n == 0 && k == 0, 1,
Sum[If[k == 1, 1, b[v, k - 1, 1]] * Abs[StirlingS1[n, v]], {v, k, n - t}]]];
T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]
A332244
Number of chains of length n in the lattice of set partitions of [2n] ordered by refinement.
Original entry on oeis.org
1, 2, 45, 8176, 5967927, 12354550875, 58745934381618, 557269710685272585, 9536970947556120868800, 273107814151944184186060560, 12345107536247705318429028256740, 840776466106445249176017830108333910, 83061829400676435859326576547506817501212
Offset: 0
-
b:= proc(n, k, t) option remember; `if`(k<0, 0, `if`({n, k}={0}, 1,
add(`if`(k=1, 1, b(v, k-1, 1))*Stirling2(n, v), v=k..n-t)))
end:
a:= n-> b(2*n, n, 0):
seq(a(n), n=0..14);
-
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[ If[k == 1, 1, b[v, k - 1, 1]] StirlingS2[n, v], {v, k, n - t}]]];
a[n_] := b[2n, n, 0];
a /@ Range[0, 14] (* Jean-François Alcover, May 08 2020, after Maple *)
A375837
Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
Offset: 0
Triangle T(n,k) begins:
n\k | 0 1 2 3 4 5 6 7 ...
-----+-----------------------------------------
0 | 1;
1 | 0, 1;
2 | 0, 1, 1;
3 | 0, 1, 5, 3;
4 | 0, 1, 23, 41, 18;
5 | 0, 1, 119, 455, 515, 180;
6 | 0, 1, 719, 5139, 10985, 9255, 2700;
7 | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
-
T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* corrected Jul 01 2025 *)
Showing 1-7 of 7 results.
Comments