cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A086053 Decimal expansion of Lengyel's constant L.

Original entry on oeis.org

1, 0, 9, 8, 6, 8, 5, 8, 0, 5, 5, 2, 5, 1, 8, 7, 0, 1, 3, 0, 1, 7, 7, 4, 6, 3, 2, 5, 7, 2, 1, 3, 3, 1, 8, 0, 7, 9, 3, 1, 2, 2, 2, 0, 7, 1, 0, 6, 4, 4, 2, 6, 8, 4, 0, 7, 4, 1, 0, 4, 2, 7, 8, 1, 5, 7, 8, 3, 2, 1, 7, 4, 4, 3, 6, 9, 6, 6, 5, 6, 0, 8, 2, 3, 2, 2, 4, 2, 3, 9, 1, 7, 4, 4, 7, 4, 9, 7, 9, 9, 0, 6, 6, 0, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 07 2003

Keywords

Comments

L - log(Pi-1)/log(2) ~ 0.00000171037285384 ~ 1/Pi^11.5999410273. - Gerald McGarvey, Aug 17 2004

Examples

			1.0986858055251870130177463257213318079312220710644268407410427815783217...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 319 and 556.

Crossrefs

Formula

Equals lim_{n->oo} A005121(n) * (2*log(2))^n * n^(1+log(2)/3) / n!^2. - Amiram Eldar, Jun 27 2021

Extensions

More terms from Vaclav Kotesovec, Mar 11 2014

A331955 Triangle T(n,k) of number of chains of length k in partitions of an n-set ordered by refinement.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 7, 3, 0, 15, 45, 49, 18, 0, 52, 306, 640, 565, 180, 0, 203, 2268, 8176, 13055, 9645, 2700, 0, 877, 18425, 108388, 279349, 359555, 227745, 56700, 0, 4140, 163754, 1523922, 5967927, 11918270, 12822110, 7095060, 1587600
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 02 2020

Keywords

Comments

Also the number of chains of equivalence relations of length k on a set of n-points.
Number of chains of length k in Stirling numbers of the second kind.
Number of chains of length k in the unordered partition of {1,2,...,n}.
Number of k-level fuzzy equivalence matrices of order n.

Examples

			The triangle T(n,k) begins:
  n\k 0   1     2      3      4       5     6     7...
  0   1
  1   0   1
  2   0   2     1
  3   0   5     7      3
  4   0  15    45     49     18
  5   0  52   306    640    565    180
  6   0 203  2268   8176  13055   9645   2700
  7   0 877 18425 108388 279349 359555 227745 56700
  ...
The T(3,2) = 7 in the lattice of set partitions of {1,2,3}:
  {{1},{2},{3}} < {{1,2},{3}},
  {{1},{2},{3}} < {{1,3},{2}},
  {{1},{2},{3}} < {{1},{2,3}},
  {{1},{2},{3}} < {{1,2,3}},
  {{1,2},{3}} < {{1,2,3}},
  {{1,3},{2}} < {{1,2,3}},
  {{1},{2,3}} < {{1,2,3}}.
		

Crossrefs

Cf. A000007 (column k=0), A000110 (column k=1), A006472 (diagonal), A330804 (row sums).
T(2n,n) gives A332244.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(k<0, 0, `if`({n, k}={0}, 1,
          add(`if`(k=1, 1, b(v, k-1, 1))*Stirling2(n, v), v=k..n-t)))
        end:
    T:= (n, k)-> b(n, k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 07 2020
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*StirlingS2[n, v], {v, k, n - t}]]];
    T[n_, k_] := b[n, k, 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Alois P. Heinz *)
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0), 1, If[k == 1, BellB[n], Sum[If[r >= 0, StirlingS2[n, r]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
  • PARI
    b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));}
    T(n, k) = b(n, k, 0);
    matrix(8, 8, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 08 2020

Formula

T(0, 0) = 1, T(0, k) = 0 for k > 0.
T(n, k) = Sum_{i_k=k..n} (Sum_{i_(k-1)=k-1..i_k - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling2(n,i_k) * Stirling2(i_k,i_(k-1)) * ... * Stirling2(i_3,i_2) * Stirling2(i_2,i_1)))...)), where 1 <= k <= n.
T(n,k) = Sum_{j=k-1..n-1} Stirling2(n,j)*T(j,k-1), 2 <= k <= n; T(n,1) = Bell(n), n >= 1; T(n,0) = A000007(n). - Rajesh Kumar Mohapatra, Jul 01 2025

A375836 Number of chains in the poset of permutations of [n].

Original entry on oeis.org

1, 1, 3, 17, 165, 2539, 57597, 1813797, 75733683, 4048845673, 269701306809, 21901093760303, 2129681860984785, 244316156443454237, 32650648748310672739, 5028367353617766838085, 884047390780977994754809, 175979907431515249448486007, 39376198947363790655257792497
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Aug 31 2024

Keywords

Examples

			Consider the set S = {1, 2, 3}. The a(3) = 6 + 8 + 3 = 17 in the poset of permutations of {1,2,3}:
|{(1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132)}| = 6;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}|=8;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13) < (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          n!+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
        end:
    seq(a(n), n=0..18);  # Alois P. Heinz, Jul 01 2025
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*Abs[StirlingS1[n, v]], {v, k, n - t}]]];
    a[n_] := Sum[b[n, k, 0], {k, 0, n}]; a /@ Range[0, 20]
  • Python
    from math import factorial as f
    from sympy.functions.combinatorial.numbers import stirling as s
    from functools import cache
    @cache
    def a(n): return f(n) + sum(abs(s(n, k, kind=1)) * a(k) for k in range(1, n)) # David Radcliffe, Jul 01 2025

Formula

a(n) = Sum_{k=0..n} A375835(n,k).
a(n) = n! + Sum_{k=1..n-1} abs(Stirling1(n,k))*a(k). - Rajesh Kumar Mohapatra, Jul 01 2025
a(n) = 2 * A375838(n) - 1. - Rajesh Kumar Mohapatra, Jul 01 2025

A375838 Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].

Original entry on oeis.org

1, 1, 2, 9, 83, 1270, 28799, 906899, 37866842, 2024422837, 134850653405, 10950546880152, 1064840930492393, 122158078221727119, 16325324374155336370, 2514183676808883419043, 442023695390488997377405, 87989953715757624724243004, 19688099473681895327628896249, 4919839221134662388853128069571, 1365091729320293490230304687026514
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Subhashree Sahoo, and Ranjan Kumar Dhani, Sep 10 2024

Keywords

Examples

			Consider the set S = {1, 2, 3}. The a(3) = 1 + 5 + 3 = 9 in the poset of permutations of {1,2,3}:
 |{(1)(2)(3)}| = 1;
 |{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123), (1)(2)(3) < (132)}|=5;
 |{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13)< (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 01 2025
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 01 2025, after A375837 *)

Formula

a(n) = Sum_{k=0..n} A375837(n,k).
a(n) = (A375836(n)+1)/2.
Conjecture: a(n) = R(n,0) where R(n,k) = (k+1) * (Sum_{i=0..n-1} R(n-1,i) + Sum_{j=0..k-1} R(n-1,j)) for 0 <= k < n, R(n,n) = 1. - Mikhail Kurkov, Jun 21 2025
a(n) ~ c * n!^2 / (2^n * log(2)^n * n^(1-log(2)/3)), where c = A385521 = 1.59585433050036621247006569740016516964502505848324064247941890934119103861277... - Vaclav Kotesovec, Jul 01 2025
a(n) = 1 + Sum_{k=1..n-1} abs(Stirling1(n,k))*a(k). - Rajesh Kumar Mohapatra, Jul 01 2025

A375835 Triangle read by rows: T(n, k) is the number of chains of length k in the poset of permutations of an n-set.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 8, 3, 0, 24, 64, 59, 18, 0, 120, 574, 970, 695, 180, 0, 720, 5858, 16124, 20240, 11955, 2700, 0, 5040, 67752, 285264, 556591, 559895, 282555, 56700, 0, 40320, 880584, 5459712, 15519287, 23585870, 19879370, 8780940, 1587600, 0, 362880, 12746208, 113511982, 451541898, 971214825, 1213062690, 882179550, 347072040, 57153600
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Aug 31 2024

Keywords

Examples

			The triangle T(n,k) begins:
  n\k 0    1      2      3      4       5      6      7 ...
  0   1
  1   0    1
  2   0    2      1
  3   0    6      8      3
  4   0   24     64     59     18
  5   0  120    574    970    695     180
  6   0  720   5858  16124  20240   11955   2700
  7   0 5040  67752 285264 556591  559895 282555  56700
  ...
The T(3, 2) = 8 chains in the poset of the permutations of {1, 2, 3} are:
{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}.
		

Crossrefs

Cf. A000007 (column k=0), A000142 (column k=1), A006472 (main diagonal), A375836 (row sums).

Programs

  • Maple
    b := proc(n, k, t) option remember; if k < 0 then return 0 fi; if {n, k} = {0} then return 1 fi; add(ifelse(k = 1, 1, b(v, k - 1, 1))*abs(Stirling1(n, v)), v = k..n-t) end: T := (n, k) -> b(n, k, 0): seq((seq(T(n, k), k=0..n)), n = 0..10);  # Peter Luschny, Sep 05 2024
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[n == 0 && k == 0, 1,
    Sum[If[k == 1, 1, b[v, k - 1, 1]] * Abs[StirlingS1[n, v]], {v, k, n - t}]]];
    T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]

Formula

Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0.
T(n, k) = Sum_{i_k=k..n} (Sum_{i_(k-1)=k-1..i_k - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n, i_k) * Stirling1(i_k, i_(k-1)) * ... * Stirling1(i_3, i_2) * Stirling1(i_2, i_1)))...)), where 1 <= k <= n.

A385521 Decimal expansion of a constant related to A375838.

Original entry on oeis.org

1, 5, 9, 5, 8, 5, 4, 3, 3, 0, 5, 0, 0, 3, 6, 6, 2, 1, 2, 4, 7, 0, 0, 6, 5, 6, 9, 7, 4, 0, 0, 1, 6, 5, 1, 6, 9, 6, 4, 5, 0, 2, 5, 0, 5, 8, 4, 8, 3, 2, 4, 0, 6, 4, 2, 4, 7, 9, 4, 1, 8, 9, 0, 9, 3, 4, 1, 1, 9, 1, 0, 3, 8, 6, 1, 2, 7, 7, 4, 3, 8, 1, 3, 9, 3, 5, 8, 2, 4, 0, 2, 3, 5, 5, 5, 9, 9, 6, 5, 8, 7, 7, 1, 8, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 01 2025

Keywords

Comments

Variant of Lengyel's constant A086053.

Examples

			1.59585433050036621247006569740016516964502505848324064247941890934119103861277...
		

Crossrefs

Formula

Equals lim_{n->oo} A375838(n) * 2^n * log(2)^n * n^(1-log(2)/3) / n!^2.

A375837 Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Ranjan Kumar Dhani, and Subhashree Sahoo, Aug 31 2024

Keywords

Examples

			Triangle T(n,k) begins:
  n\k | 0  1   2     3     4      5      6     7 ...
 -----+-----------------------------------------
  0   | 1;
  1   | 0, 1;
  2   | 0, 1, 1;
  3   | 0, 1, 5, 3;
  4   | 0, 1, 23, 41, 18;
  5   | 0, 1, 119, 455, 515, 180;
  6   | 0, 1, 719, 5139, 10985, 9255, 2700;
  7   | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
  ...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
		

Crossrefs

Cf. A000007 (column k=0), A057427 (column k=1), A006472 (diagonal), A375838 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* corrected Jul 01 2025 *)

Formula

Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n,i_(k-1)) * Stirling1(i_(k-1),i_(k-2)) * ... * Stirling1(i_3,i_2) * Stirling1(i_2,i_1)))...)), where 2 <= k <= n.

A330032 The number of chains of strictly rooted upper triangular or lower triangular matrices of order n.

Original entry on oeis.org

1, 2, 26, 9366, 204495126, 460566381955706, 162249649997008147763642, 12595124129900132067036747870669270, 288398561903310939256721956218813835167026180310, 2510964964470962082968627390938311899485883615067802615950711482
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 29 2020

Keywords

Comments

Also, the number of chains in the power set of (n^2-n)/2-elements such that the first term of the chains is either an empty set or a set of (n^2-n)/2-elements.
The number of rooted chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.
The number of distinct rooted reflexive symmetric fuzzy matrices of order n.
The number of chains in the set consisting of all n X n reflexive symmetric matrices such that the first term of the chains is either reflexive symmetric matrix or unit matrix.

Crossrefs

Formula

a(n) = A000629((n^2-n)/2).

Extensions

Missing term a(6) = 162249649997008147763642 inserted by Georg Fischer, Jul 15 2024

A329712 The number of rooted chains in the lattice of (0, 1) matrices of order n.

Original entry on oeis.org

1, 2, 150, 14174522, 10631309363962710, 213394730876951551651166996282, 288398561903310939256721956218813835167026180310, 55313586130829865212025793302979452922870356482030868613037427298852922
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 29 2020

Keywords

Comments

Also, the number of n X n distinct rooted fuzzy matrices.
The number of chains in the power set of n^2-elements such that the first term of the chains is either an empty set or a set of n^2-elements.
The number of chains in the collection of all binary (crisp or Boolean or logical) matrices of order n such that the first term of the chains is either null matrix or unit matrix.

Crossrefs

Formula

a(n) = A000629(n^2).

A329911 The number of rooted chains of reflexive matrices of order n.

Original entry on oeis.org

1, 1, 6, 9366, 56183135190, 5355375592488768406230, 22807137588023760967484928392369803926, 9821625950779149908637519199878777711089567893389821437206
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 29 2020

Keywords

Comments

Also, the number of n X n distinct rooted reflexive fuzzy matrices.
The number of chains in the power set of (n^2-n)-elements such that the first term of the chains is either an empty set or a set of (n^2-n)-elements.
The number of chains in the collection of all reflexive matrices of order n such that the first term of the chains is either identity matrix or unit matrix.

Crossrefs

Formula

a(n) = A000629(n^2-n).
Showing 1-10 of 10 results.