A331979 Number of compositions (ordered partitions) of n into distinct nontrivial divisors of n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 894, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 894, 0, 0, 0, 0, 0, 30, 0, 120, 0, 0, 0, 19518, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 18558, 0, 0, 0, 0, 0, 6, 0, 864
Offset: 0
Keywords
Examples
a(12) = 6 because we have [6, 4, 2], [6, 2, 4], [4, 6, 2], [4, 2, 6], [2, 6, 4] and [2, 4, 6].
Links
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]): b:= proc(m, i, p) option remember; `if`(m=0, p!, `if`(i<1, 0, b(m, i-1, p)+`if`(l[i]>m, 0, b(m-l[i], i-1, p+1)))) end; forget(b): b(n, nops(l), 0) end: seq(a(n), n=0..100); # Alois P. Heinz, Feb 03 2020
-
Mathematica
a[n_] := If[n == 0, 1, Module[{b, l = Divisors[n] ~Complement~ {1, n}}, b[m_, i_, p_] := b[m, i, p] = If[m == 0, p!, If[i < 1, 0, b[m, i-1, p] + If[l[[i]] > m, 0, b[m - l[[i]], i-1, p+1]]]]; b[n, Length[l], 0]]]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)