cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332049 a(n) = (1/2) * Sum_{d|n, d > 1} d * phi(d).

Original entry on oeis.org

0, 1, 3, 5, 10, 10, 21, 21, 30, 31, 55, 38, 78, 64, 73, 85, 136, 91, 171, 115, 150, 166, 253, 150, 260, 235, 273, 236, 406, 220, 465, 341, 388, 409, 451, 335, 666, 514, 549, 451, 820, 451, 903, 610, 640, 760, 1081, 598, 1050, 781, 955, 863, 1378, 820, 1165
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 06 2020

Keywords

Comments

Sum of numerators of the reduced fractions 1/n, ..., (n-1)/n. Note that if n is a prime p this is p*(p-1)/2 as all fractions are already reduced. For 1/n, ..., n/n, see A057661.

Examples

			For n = 5, fractions are 1/5, 2/5, 3/5, 4/5, sum of numerators is 10.
For n = 8, fractions are 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, sum of numerators is 21.
		

Crossrefs

Programs

  • Haskell
    toNums a = fmap (numerator . (% a))
    toNumList a = toNums a [1..(a-1)]
    sumList = sum . toNumList <$> [2..200]
  • Magma
    [0] cat [(1/2)*&+[ d*EulerPhi(d):d in Set(Divisors(n)) diff {1}]:n in [2..60]]; // Marius A. Burtea, Feb 07 2020
    
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for d from 2 to N do
      v:= d*numtheory:-phi(d)/2;
      R:= [seq(i,i=d..N,d)];
      V[R]:= V[R] +~ v
    od:
    convert(V,list); # Robert Israel, Feb 07 2020
  • Mathematica
    Table[(1/2) Sum[If[d > 1, d EulerPhi[d], 0], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[(1/2) Sum[EulerPhi[k^2] x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[k/GCD[n, k], {k, 1, n - 1}], {n, 1, 55}]
    Table[(DivisorSigma[2, n^2] - DivisorSigma[1, n^2])/(2 DivisorSigma[1, n^2]), {n, 1, 55}]
  • PARI
    a(n) = sumdiv(n, d, if (d>1, d*eulerphi(d)))/2; \\ Michel Marcus, Feb 07 2020
    

Formula

G.f.: (1/2) * Sum_{k>=2} phi(k^2) * x^k / (1 - x^k).
a(n) = Sum_{k=1..n-1} k / gcd(n,k).
a(n) = (sigma_2(n^2) - sigma_1(n^2)) / (2 * sigma_1(n^2)).
a(n) = Sum_{d|n, d > 1} A023896(d).
a(n) = A057661(n) - 1 = (A057660(n) - 1) / 2.