cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299415 Number of steps of iterating z -> z^2 + c with c = 1/4 + 10^(-n) to reach z > 2, starting with z = 0.

Original entry on oeis.org

2, 8, 30, 97, 312, 991, 3140, 9933, 31414, 99344, 314157, 993457, 3141591, 9934586, 31415925, 99345881, 314159263, 993458825, 3141592652, 9934588264
Offset: 0

Views

Author

Martin Renner, Feb 21 2018

Keywords

Comments

A relation between Pi and the Mandelbrot set: a(n)*10(-n/2) converges to Pi.
c = 1/4 is the largest real number in the Mandelbrot set.
The difference between the terms of b(n) = floor(Pi*sqrt(10^n)) = 3, 9, 31, 99, 314, 993, 3141, 9934, 31415, 99345, 314159, 993458, ... and a(n) is d(n) = 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...

References

  • Heinz-Otto Peitgen; Hartmut Jürgens; Dietmar Saupe: Chaos. Bausteine der Ordnung. Berlin; Heidelberg: Springer, 1994, p. 452-456.

Crossrefs

Cf. A332061, A332062 (same with epsilon = 1/n resp. 1/2^n).

Programs

  • Maple
    Digits:=10^3:
    f:=proc(z,c,k) option remember;
      f(z,c,k-1)^2+c;
    end;
    a:=proc(n)
    local epsilon, c, k;
      epsilon:=10.^(-n):
      c:=0.25+epsilon:
      f(0,c,0):=0:
      for k do
        if abs(f(0,c,k))>2 then
          break;
        fi;
      od:
      return(k);
    end;
    seq(a(n),n=0..11);
  • Mathematica
    digits = 10^3;
    f[z_, c_, k_] := f[z, c, k] = f[z, c, k-1]^2 + c;
    a[n_] := Module[{epsilon = 10^-n, c, k}, c = N[1/4 + epsilon, digits]; f[0, c, 0] = 0; For[k = 1, True, k++, If[Abs[f[0, c, k]] > 2, Break[]]]; k];
    a /@ Range[0, 11] (* Jean-François Alcover, Nov 05 2020, after Maple *)
  • PARI
    apply( {A299415(n)=A332061(10^n)}, [0..12]) \\ a(12) may take about a second to compute. -  M. F. Hasler, Feb 22 2020
    
  • Python
    A299415 = lambda n: A332061(10**n) # Warning: may give incorrect result for default (double) precision for n >= 12. -  M. F. Hasler, Feb 22 2020

Extensions

Edited and extended to a(14) by M. F. Hasler, Feb 22 2020
a(15)-a(19) from Bill McEachen, Aug 10 2025

A332062 Number of iterations of z -> z^2 + 1/4 + 1/2^n until z > 2, starting with z = 0.

Original entry on oeis.org

2, 3, 5, 7, 11, 16, 23, 34, 48, 69, 99, 140, 199, 282, 400, 567, 802, 1135, 1607, 2273, 3215, 4548, 6432, 9097, 12866, 18196, 25734, 36394, 51470, 72790, 102942, 145582, 205885, 291167, 411773, 582336, 823548, 1164673, 1647097, 2329348, 3294197, 4658698, 6588395
Offset: 0

Views

Author

M. F. Hasler, Feb 22 2020

Keywords

Comments

The iterated map is of the form of the maps f_c: z -> z^2 + c used to define the Mandelbrot set as those complex c for which the trajectory of 0 under f_c will never leave the ball of radius 2.
The largest real number in the Mandelbrot set is c = 1/4, with the trajectory of 0 going to 1/2 from the left.
The number of iterations N(epsilon) to reach z > 2 for c = 1/4 + epsilon is such that N(epsilon) ~ Pi/sqrt(epsilon), see the Numberphile video.

Crossrefs

Cf. A332061 (contains this as subsequence), A299415 (variant based on the same idea, with 1/10^n instead of 1/2^n).

Programs

  • PARI
    apply( {A332062(n)=A332061(2^n)}, [0..35]) \\ may take about a second
    
  • Python
    A332062 = lambda n: A332061(2**n) # Warning: may give incorrect result for default (double) precision for n > 40. - Giovanni Resta, Mar 08 2020

Formula

a(n) = A332061(2^n) ~ Pi*2^(n/2), asymptotically.

Extensions

More terms from Jinyuan Wang, Mar 08 2020
Showing 1-2 of 2 results.