cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332085 Number of ordered pairs of divisors of n, (d1,d2), such that d1 is prime and d1 <= d2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 5, 1, 9, 1, 5, 5, 4, 1, 9, 1, 8, 5, 5, 1, 13, 2, 5, 3, 8, 1, 18, 1, 5, 5, 5, 5, 15, 1, 5, 5, 12, 1, 17, 1, 8, 9, 5, 1, 17, 2, 9, 5, 8, 1, 13, 5, 12, 5, 5, 1, 29, 1, 5, 9, 6, 5, 17, 1, 8, 5, 18, 1, 21, 1, 5, 9, 8, 5, 17, 1, 16, 4, 5, 1, 28, 5, 5, 5, 11, 1, 30
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 22 2020

Keywords

Examples

			a(7) = 1; There are two divisors of 7: {1,7}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (7,7). So a(7) = 1.
a(8) = 3; There are 4 divisors of 8: {1,2,4,8}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,4) and (2,8). So a(8) = 3.
a(9) = 2; There are three divisors of 9: {1,3,9}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (3,3) and (3,9). So a(9) = 2.
a(10) = 5; There are four divisors of 10: {1,2,5,10}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,5), (2,10), (5,5) and (5,10). So a(10) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ A135539
    a(n) = my(v=row(n)); sumdiv(n, d, if (isprime(d), v[d])); \\ Michel Marcus, May 24 2025

Formula

a(n) = Sum_{d1|n, d2|n, d1 is prime, d1 <= d2} 1.
a(n) = A337320(n) + omega(n).
a(n) = Sum_{p|n, p prime} A135539(n,p). - Ridouane Oudra, May 24 2025
a(n) = A248577(n) - A337322(n). - Ridouane Oudra, May 30 2025