A332196 a(n) = 10^(2n+1) - 1 - 3*10^n.
6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332196 := n -> 10^(n*2+1)-1-3*10^n;
-
Mathematica
Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0] FromDigits/@Table[Join[PadLeft[{6},n,9],PadRight[{},n-1,9]],{n,30}] (* or *) LinearRecurrence[{111,-1110,1000},{6,969,99699},30] (* Harvey P. Dale, May 03 2021 *)
-
PARI
apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])
-
Python
def A332196(n): return 10**(n*2+1)-1-3*10^n
Formula
a(n) = 9*A138148(n) + 6*10^n.
G.f.: (6 + 303*x - 1200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) - 3*exp(9*x) - 1). - Stefano Spezia, Jul 13 2024