cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332258 E.g.f.: 1 / (1 + x - sinh(x)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 20, 1, 112, 1681, 492, 27721, 371624, 319177, 13461604, 171387217, 319071456, 11466038689, 143550642140, 484491620089, 15758152572952, 199089883272217, 1077471975974484, 32827750137627457, 427744154995090256, 3385134777669637681
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2020

Keywords

Comments

Number of labeled ordered partitions of an n-set into odd parts > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 + x - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k - 1] a[n - 2 k + 1], {k, 2, Ceiling[n/2]}]; Table[a[n], {n, 0, 25}]
  • PARI
    seq(n)={Vec(serlaplace(1 / (1 + x - sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020

Formula

a(0) = 1; a(n) = Sum_{k=2..ceiling(n/2)} binomial(n,2*k-1) * a(n-2*k+1).
a(n) ~ n! / ((cosh(r) - 1) * r^(n+1)), where r = 1.72911689821437486498840709347... is the root of the equation 1 + r - sinh(r) = 0. - Vaclav Kotesovec, Feb 08 2020